|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||
An exact category is a category where every morphism
f has a kernel morphism and a cokernel morphism, and
furthermore has the following canonical factorization.
An image morphism is a kernel morphism of a cokernel morphism. Dually, a coimage is a cokernel of a kernel. The main point of the diagram is that the bottom arrow is an isomorphism. The other four arrows-- ker-retraction, coker-section, and the two unlabelled vertical arrows--are appropriate one-sided inverses for the arrows they're next to. As an example, the category of finite-dimensional vector spaces over a field is an exact category.
These ideas lie at the core of Sheafhom. For instance, see the
implementation of cohomology (CochainCx.H(int)). A reference is
Section I.1 of Birger Iversen, Cohomology of Sheaves
(Universitext), Springer-Verlag, Berlin, 1986.
Methods like getKernel() and getImage() are
required to return the same objects K, C,
I, or I' (up to equals)
every time.
| Method Summary | |
ExactCategoryMorphism |
getCoimage()
See the comment on ExactCategoryMorphism. |
ExactCategoryMorphism |
getCoimSection()
See the comment on ExactCategoryMorphism. |
ExactCategoryMorphism |
getCoimToIm()
The bottom arrow (the isomorphism) in the comment on ExactCategoryMorphism. |
ExactCategoryMorphism |
getCokernel()
See the comment on ExactCategoryMorphism. |
ExactCategoryMorphism |
getCokerSection()
See the comment on ExactCategoryMorphism. |
ExactCategoryMorphism |
getImage()
See the comment on ExactCategoryMorphism. |
ExactCategoryMorphism |
getImRetraction()
See the comment on ExactCategoryMorphism. |
ExactCategoryMorphism |
getKernel()
See the comment on ExactCategoryMorphism. |
ExactCategoryMorphism |
getKerRetraction()
See the comment on ExactCategoryMorphism. |
boolean |
isCompositionZero(ExactCategoryMorphism f)
Whether the composition of this and f
(see the diagram for Morphism.compose(shh.homolalg.Morphism)) is a zero
morphism. |
boolean |
isZero()
Whether this is a zero morphism. |
| Methods inherited from interface Morphism |
compose, getInverse, getSource, getTarget, isEpic, isIsomorphism, isMonic |
| Method Detail |
public boolean isZero()
public boolean isCompositionZero(ExactCategoryMorphism f)
this and f
(see the diagram for Morphism.compose(shh.homolalg.Morphism)) is a zero
morphism. Is expected to be more efficient than just computing
the composition and calling isZero() on it.
public ExactCategoryMorphism getKernel()
ExactCategoryMorphism.
public ExactCategoryMorphism getKerRetraction()
ExactCategoryMorphism.
public ExactCategoryMorphism getCoimage()
ExactCategoryMorphism.
public ExactCategoryMorphism getCoimSection()
ExactCategoryMorphism.
public ExactCategoryMorphism getCokernel()
ExactCategoryMorphism.
public ExactCategoryMorphism getCokerSection()
ExactCategoryMorphism.
public ExactCategoryMorphism getImage()
ExactCategoryMorphism.
public ExactCategoryMorphism getImRetraction()
ExactCategoryMorphism.
public ExactCategoryMorphism getCoimToIm()
ExactCategoryMorphism.
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||