Hecke Operators for Arithmetic Groups via Cell Complexes Mark McConnell Center for Communications Research, Princeton #### Overview - Cohomology of locally symmetric spaces for SL_n - The conjectural connection between the cohomology and Galois representations - Cell complexes that let us compute this cohomology Joint work with Avner Ash (Boston College) and Paul Gunnells (U. Mass.) #### **Definitions** $G = GL_n(\mathbf{R})$, the $n \times n$ matrices of non-zero determinant. • $SL_n(\mathbf{R})$ is the subgroup of G of determinant 1. $K = \mathcal{O}_n(\mathbf{R})$, the $g \in G$ preserving the standard dot product on \mathbf{R}^n . • $K \subset G$ is a maximal compact subgroup. $\mathbf{R}_{+} = \{\lambda I \in G \mid \lambda > 0\}, \text{ the homotheties.}$ $X = G/K\mathbf{R}_{+}$ is the symmetric space for $SL_n(\mathbf{R})$. $\Gamma = \mathrm{SL}_n(\mathbf{Z})$, with integer entries and determinant 1. $\Gamma \backslash X$ is a locally symmetric space. ### Lattices If $g \in G$, the rows of g form a basis $\{e_1, \ldots, e_n\}$ of \mathbf{R}^n . The **Z**-span of $\{e_i\}$ is a *lattice*. It is an additive subgroup $\cong \mathbf{Z}^n$. ### Marked Lattices A marked lattice is a lattice together with a distinguished lattice basis. Γ acts by preserving the underlying lattice, but changing the distinguished basis. All bases are equivalent mod Γ . Hence $$\Gamma \backslash G = \{ \text{lattices} \in \mathbf{R}^n \}.$$ K acts on a marked lattice by rotating/reflecting the whole picture. \mathbf{R}_{+} acts by rescaling the whole picture (homothety). Hence the locally symmetric space $\Gamma \backslash X = \{ \text{lattices} \in \mathbf{R}^n \} \text{ modulo rotations and homotheties.}$ #### Smith Normal Form If L is a lattice and $M \subseteq L$ a sublattice of finite index, $$L/M \cong \mathbf{Z}/a_1\mathbf{Z} \oplus \cdots \oplus \mathbf{Z}/a_n\mathbf{Z}$$ where $a_i \in \mathbf{Z}$, $a_i \geq 1$, and $a_1 \mid a_2 \mid \cdots \mid a_n$. - The a_i are the invariant factors of (L, M). - They are the diagonal entries in the *Smith normal form* (SNF) of a matrix giving a basis of M with respect to a basis of L. ### Hecke Correspondences $$L/M \cong \mathbf{Z}/a_1\mathbf{Z} \oplus \cdots \oplus \mathbf{Z}/a_n\mathbf{Z}$$ (*) For fixed L and fixed a_1, \ldots, a_n , only finitely many $M \subseteq L$ satisfy (*). The Hecke correspondence $T(a_1, \ldots, a_n)$ is the one-to-many map $\Gamma \setminus X \to \Gamma \setminus X$ given by $$L \mapsto \{M \text{ satisfying } (*)\}.$$ **Example.** The Hecke correspondence T(1,2) is generically a 1-to-3 map. It carries the L in our pictures to the following three lattices of red points. Can take formal **Z**-linear combinations of Hecke correspondences. Can compose them. This makes them a ring. **Fact.** The Hecke correspondences for Γ form a commutative ring that is isomorphic to the polynomial ring on the generators $$T(p,k) = T(1,...,1,p,...,p)$$ for p prime, $k = 1,...,n$. with k copies of p and n-k copies of 1. (Let $T(p,0)=\mathrm{id.}$) # Equivalent Definition of Hecke Correspondences Let $\alpha = \operatorname{diag}(a_1, \ldots, a_n)$. Let $\tilde{\Gamma} = \Gamma \cap (\alpha^{-1}\Gamma\alpha)$. This is a subgroup of Γ of finite index. There are two maps $$\begin{array}{c} \tilde{\Gamma}\backslash X \\ c_1 \downarrow & \downarrow c_2 \\ \Gamma\backslash X \end{array}$$ with $c_1: \tilde{\Gamma}x \mapsto \Gamma x$ and $c_2: \tilde{\Gamma}x \mapsto \Gamma \alpha x$. The Hecke correspondence $T(a_1, \ldots, a_n)$ is: • lift $x \in \Gamma \setminus X$ by c_1 , which gives finitely many points, and push these points back down by c_2 . **Example.** For $\alpha = \text{diag}(1, \dots, 1, N)$, the group $\tilde{\Gamma}$ is $$\Gamma_0(N) = \left\{ \gamma \in \mathrm{SL}_n(\mathbf{Z}) \middle| \gamma \equiv \begin{pmatrix} * & \cdots & * & 0 \\ \vdots & \ddots & \vdots & 0 \\ * & \cdots & * & 0 \\ * & \cdots & * & * \end{pmatrix} \bmod N \right\}.$$ $\Gamma_0(N)\backslash X$ is a space of lattices with extra structure. $$\Gamma_0(N)\backslash X = \{(L, L') \mid L' \subseteq L, L/L' \cong \mathbf{Z}/N\mathbf{Z}\}/(\text{rot.}, \text{homoth.})$$ Example. This pair is a point in $\Gamma_0(2)\backslash X$ for n=2. The two maps $\Gamma_0(2)\backslash X \to \Gamma\backslash X$ are $c_1: (\text{pair}) \mapsto \text{black}, c_2: (\text{pair}) \mapsto \text{green}.$ ### Congruence Subgroups Let $$\Gamma(N) = \{ \gamma \in \operatorname{SL}_n(\mathbf{Z}) \mid \gamma \equiv I \mod N \}.$$ Say Γ' is a congruence subgroup of level N if there is an N such that $\Gamma(N) \subseteq \Gamma' \subseteq \Gamma$. (Example: $\Gamma_0(N)$.) All congruence subgroups are of finite index in Γ . The locally symmetric space $\Gamma' \setminus X$ has an interpretation as a space of lattices with extra structure. Hecke correspondences are defined as before: $$(\Gamma' \cap \alpha^{-1}\Gamma'\alpha) \backslash X$$ $$c_1 \downarrow \qquad \downarrow c_2$$ $$\Gamma \backslash X$$ The Hecke correspondences generate a polynomial algebra. (Must modify the generators slightly when $p \mid N$.) ### Connections with Automorphic Forms Let V be a Γ' -module. In this talk, V will be defined over \mathbf{R} or \mathbf{C} . Often $V = \mathbf{C}$ with trivial Γ' -action ("constant coefficients"). Let $\omega \in H^i(\Gamma' \setminus X; V)$. A Hecke correspondence acts on cohomology by $\omega \mapsto c_{2*}c_1^*\omega$. We say the Hecke correspondences descend to a ring of *Hecke operators* on cohomology. ### Cuspidal Cohomology We always use $\omega \in H^i(\Gamma' \setminus X; V)$ to denote a cuspidal cohomology class. - A cuspidal differential form is a differential form with coefficients in V satisfying certain vanishing conditions as you go out to infinity (toward the cusps) in $\Gamma' \setminus X$. It is rapidly decreasing, and appropriate integrals vanish over the parabolic subgroup associated to each cusp. - A cohomology class is *cuspidal* if it is supported on a cuspidal differential form. The cuspidal cohomology is one building block of $H^*(\Gamma' \setminus X; V)$. The rest of H^i is not cuspidal, but comes from the cuspidal cohomology of other groups. Often Eisenstein classes connect the cohomology of the big space with the cuspidal part of lower-rank subgroups of G. ### The Hecke polynomial Also, we always assume $\omega \in H^i(\Gamma' \backslash X; V)$ is an eigenclass for the Hecke operators. Let a(p, k) be the eigenvalue for T(p, k). Define the *Hecke polynomial* by $$P(\omega, p) = \sum_{k=0}^{n} (-1)^k p^{k(k-1)/2} a(p, k) T^k.$$ #### **Frobenius** For any finite Galois extension $\mathbf{Q}(\beta)/\mathbf{Q}$, if p is unramified in $\mathbf{Q}(\beta)$, there is an element $\operatorname{Frob}_p \in \operatorname{Gal}(\mathbf{Q}(\beta)/\mathbf{Q})$, well-defined up to conjugacy, called the *Frobenius element*. Characterized by saying it pushes forward to the generator of the Galois extension $\mathbf{F}_p(\bar{\beta})/\mathbf{F}_p$ given by $x \mapsto x^p$. Let $G_{\mathbf{Q}} = \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$. The algebraic closure $\bar{\mathbf{Q}}/\mathbf{Q}$ is an inverse limit of finite Galois extensions, compact in the natural topology. $\exists \operatorname{Frob}_p \in \operatorname{Gal}(\mathbf{Q}(\beta)/\mathbf{Q})$, the limit of the finite ones, defined up to conjugacy. We now come to the main point of the talk, the conjecture we want to test. Conjecture. Let $\omega \in H^i(\Gamma' \setminus X; V)$ be a cuspidal Hecke eigenclass. Then there is a number field F with ring of integers B, such that for any prime l and prime λ of B lying over l, there is a continuous semi-simple Galois representation $$\rho: G_{\mathbf{Q}} \to \mathrm{GL}_n(B_{\lambda}),$$ unramified outside lN, and such that, for any prime $p \nmid lN$, the characteristic polynomial of $\rho(\operatorname{Frob}_p^{-1})$ is the Hecke polynomial $P(\omega, p)$. - Relates topology (ω) with number theory $(\rho(\operatorname{Frob}_p^{-1}))$. - We say that ρ , if it exists, is attached to ω . ### Source of the conjecture Comes from the world of motives and the Langlands program. For SL_2 , the conjecture is known. (Hecke, Weil, Eichler, Shimura, Deligne.) $X = \mathfrak{h}$, the upper half-plane. $\Gamma' \setminus \mathfrak{h}$ is a modular curve. ω comes from a cusp form of weight 2 on the modular curve. The Hecke correspondences cut out an abelian subvariety $A \subseteq \operatorname{Jac}(\Gamma' \setminus \mathfrak{h})$. The points of order l^m (as $m \to \infty$) on $A(\bar{\mathbf{Q}})$ are $\cong B_{\lambda} \times B_{\lambda}$. Galois acts on this product, giving a 2-dimensional ρ . The motive is A, or really $H_1(A)$. Both sides of the conjecture are independent of l. The motive is the "l-adic cohomology without the l." For n > 2 there is no obvious candidate for a motive. The locally symmetric space $\Gamma' \setminus X$ is no longer an algebraic variety. Nevertheless, standard conjectures would attach a motive to each cuspidal automorphic representation Π of GL_n over a number field, as long as the infinity type of Π is algebraic. One knows that if Π arises from a cuspidal ω where V is a rational representation, then Π satisfies this algebraicity condition. There would be a Galois representation ρ coming from the motive, giving the conjecture as stated that relates the Hecke eigenvalues of ω to $\rho(\mathrm{Frob}_p^{-1})$. # Computational Topology We are able to - compute $H^i(\Gamma'\backslash X; V)$ explicitly by machine; - compute the action of the Hecke operators; - check the conjecture computationally. #### The Well-Rounded Retract Recall X is the space of marked lattices L in \mathbb{R}^n . Let $$m(L) = \min\{\|\mathbf{v}\| \mid \mathbf{v} \in L, \mathbf{v} \neq 0\}.$$ The minimal vectors of L are $$M(L) = \{ \mathbf{v} \in L \mid ||\mathbf{v}|| = m(L) \}.$$ Say L is well-rounded if M(L) spans \mathbf{R}^n . **Definition.** The well-rounded retract W is the set of all well-rounded lattices in X. ### The Well-Rounded Retract for SL₂ The short vectors $M(L) = \{\pm e_1\}$ are on the circle. Keep x fixed, and shrink y vertically, till $\pm e_2$ also touches the circle. Then $M(L) = \{\pm e_1, \pm e_2\}$ will span \mathbf{R}^2 , and L will be well-rounded. Top Cell for $SL_3(\mathbf{Z})$ (The Soulé Cube) Four cubes meet at each triangle. Three meet at each hexagon. ### The Well-Rounded Retract in general - W is a locally finite cell complex. - Γ acts on W, preserving the cells. - There are only finitely many types of cells mod Γ' . - W is a Γ -invariant deformation retract of X. - The deformation retraction is a sequence of geodesic flows on X [Ash-M., 1996]. - $\Gamma' \setminus W$ is a finite cell complex and is a deformation retract of $\Gamma' \setminus X$. - $H^i(\Gamma' \setminus W; V) = H^i(\Gamma' \setminus X; V)$, and we can find the groups for $\Gamma' \setminus W$ by computer. ### Computing Hecke Operators Trouble: W is not carried into itself by Hecke operators. The deformation retraction $T(p,k)(W) \to W$ is many-to-many and complicated. For $SL_2(\mathbf{Z})$, use the modular symbol algorithm (Manin). Ash-Rudolph have an algorithm for all SL_n , generalizing continued fractions. It only works for $H^d(\Gamma'\backslash X; V)$, where d is the v.c.d. (top degree). Gunnells has an algorithm based on the detailed structure of W and the Voronoï decomposition. It works for H^i for some i < d. ### **AGM III** Rest of the talk is on [Ash, Gunnells, M. 2009], the first computational work of this type for GL₄. From now on, n = 4, $\Gamma' = \Gamma_0(N)$, and $V = \mathbf{C}$ (constant coefficients). For GL_4 , cuspidal cohomology lies only in H^4 and H^5 , and these are dual to each other. Look at H^5 . The v.c.d. is 6, and Gunnells' Hecke algorithm works on H^5 (codimension 1). We decompose H^5 into Hecke eigenspaces for T(p,k) for p as large as we can. On each eigenspace, we compute the Hecke polynomials and factor them, which says how $\operatorname{Frob}_p^{-1}$ acts on the eigenspace. Say ρ seems to be attached to ω if the conjecture is satisfied at all the p you can compute before your machine runs out of memory. Often just the T(2,k) are enough to suggest how ρ decomposes. Example. If a Hecke polynomial (degree 4) factors as (linear)(linear)(quadratic), it strongly suggests this is not a cuspidal eigenspace. Rather, it comes from an SL_2 symmetric space out at one of the cusps. The quadratic terms will be the Hecke polynomial for some newform of weight 2 or 4. The two linear terms are twists by a power of the cyclotomic character. ### Results for GL₄ We computed $H^5(\Gamma_0(N); \mathbf{C})$ for all N up into the mid-50s, and for all prime $N \leq 211$. We found Eisensteinian cohomology coming from the cusps for SL₂ as expected. Also for SL₃ [Ash, Grayson, Green 1984]. We found that the cuspidal part consists of functorial lifts of Siegel modular forms from paramodular subgroups of $\mathrm{Sp}_4(\mathbf{Q})$ that are not Gritsenko lifts. These correspond to selfdual automorphic representations on $\mathrm{GL}(4)/\mathbf{Q}$. ### **Autochthonous Forms?** We were hoping to find non-lifted cuspidal cohomology classes, which would corresponded to non-selfdual automorphic representations. These would be autochthonous, not coming from any lower-rank group. Need higher N? ### Linear Algebra Issues For GL₄, the cochain complex computing $H^5(\Gamma_0(N)\backslash W)$ has matrices d^5 and d^4 with $d^5d^4=0$. The matrices have size $$d^5 = N^3/96 \times N^3/10$$ $d^4 = N^3/10 \times N^3/3$ For N = 211, d^4 is $944,046 \times 3,277,686$. The matrices are very sparse: only up to 6 entries per column, and 26 per row, independent of N. We find the Smith normal form of the matrices, e.g., $d^4 = P_4 D_4 Q_4$, where P_4 and Q_4 have det ± 1 , and D_4 is diagonal in SNF. We prefer to work over \mathbf{Z} (arbitrary precision). That gives the torsion in the cohomology over \mathbf{Z} , as well as the rank over \mathbf{C} . We do this for N up to the 30s. Thereafter, to avoid integer explosion, we work over a fixed finite field (set $\mathbf{C} = \mathbf{F}_{12379}$). To find Hecke, we must compute and store the change of basis matrices P and Q. This rules out some of the leading linear algebra techniques: - reduce $d^4 \mod p$ for many 16-bit p, compute the D_4 for each p, and reassemble the SNF over \mathbb{Z} by Chinese remaindering. (Dumas et al.) It is unknown how do to this while remembering P and Q. - Iterative methods (Krylov subspaces, Wiedemann, Lanczos). E.g., these solve Ax = b linear algebra problems without reducing A. - Essentially no low-valence rows and columns. Instead, M. has developed *Sheafhom*. It uses classical methods like Gaussian elimination, but orders the steps differently and uses special data structures. It solved N=211 on a 4G Linux laptop.