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Overview

• Cohomology of locally symmetric spaces for SLn

• The conjectural connection between the cohomology and Galois
representations

• Cell complexes that let us compute this cohomology

Joint work with Avner Ash (Boston College) and Paul Gunnells
(U. Mass.)
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Definitions

G = GLn(R), the n× n matrices of non-zero determinant.

• SLn(R) is the subgroup of G of determinant 1.

K = On(R), the g ∈ G preserving the standard dot product on Rn.

• K ⊂ G is a maximal compact subgroup.

R+ = {λI ∈ G | λ > 0}, the homotheties.

X = G/KR+ is the symmetric space for SLn(R).

Γ = SLn(Z), with integer entries and determinant 1.

Γ\X is a locally symmetric space.
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Lattices

If g ∈ G, the rows of g form a basis {e1, . . . , en} of Rn.

The Z-span of {ei} is a lattice. It is an additive subgroup ∼= Zn.
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Marked Lattices

A marked lattice is a lattice together with a distinguished lattice
basis.
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Γ acts by preserving the underlying lattice, but changing the
distinguished basis. All bases are equivalent mod Γ. Hence

Γ\G = {lattices ∈ Rn}.
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K acts on a marked lattice by rotating/reflecting the whole picture.

R+ acts by rescaling the whole picture (homothety).

Hence the locally symmetric space

Γ\X = {lattices ∈ Rn} modulo rotations and homotheties.
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Smith Normal Form

If L is a lattice and M ⊆ L a sublattice of finite index,

L/M ∼= Z/a1Z⊕ · · · ⊕ Z/anZ

where ai ∈ Z, ai ≥ 1, and a1 | a2 | · · · | an.

• The ai are the invariant factors of (L,M).

• They are the diagonal entries in the Smith normal form (SNF)
of a matrix giving a basis of M with respect to a basis of L.
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Hecke Correspondences

L/M ∼= Z/a1Z⊕ · · · ⊕ Z/anZ (∗)

For fixed L and fixed a1, . . . , an, only finitely many M ⊆ L

satisfy (∗).

The Hecke correspondence T (a1, . . . , an) is the one-to-many map
Γ\X → Γ\X given by

L 7→ {M satisfying (∗)}.
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Example. The Hecke correspondence T (1, 2) is generically a 1-to-3
map. It carries the L in our pictures to the following three lattices
of red points.
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Can take formal Z-linear combinations of Hecke correspondences.
Can compose them. This makes them a ring.

Fact. The Hecke correspondences for Γ form a commutative ring
that is isomorphic to the polynomial ring on the generators

T (p, k) = T (1, . . . , 1, p, . . . , p) for p prime, k = 1, . . . , n.

with k copies of p and n− k copies of 1. (Let T (p, 0) = id.)
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Equivalent Definition of Hecke Correspondences

Let α = diag(a1, . . . , an). Let Γ̃ = Γ ∩ (α−1Γα). This is a subgroup
of Γ of finite index. There are two maps

Γ̃\X

c1 ↓ ↓ c2

Γ\X

with c1 : Γ̃x 7→ Γx and c2 : Γ̃x 7→ Γαx.

The Hecke correspondence T (a1, . . . , an) is:

• lift x ∈ Γ\X by c1, which gives finitely many points, and push
these points back down by c2.
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Example. For α = diag(1, . . . , 1, N), the group Γ̃ is

Γ0(N) =


γ ∈ SLn(Z)

∣∣∣∣∣∣∣∣∣∣∣∣
γ ≡


∗ · · · ∗ 0
...

. . .
... 0

∗ · · · ∗ 0

∗ · · · ∗ ∗

 mod N


.
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Γ0(N)\X is a space of lattices with extra structure.

Γ0(N)\X = {(L,L′) | L′ ⊆ L, L/L′ ∼= Z/NZ}/(rot.,homoth.)

Example. This pair is a point in Γ0(2)\X for n = 2. The two maps
Γ0(2)\X → Γ\X are c1 : (pair) 7→ black, c2 : (pair) 7→ green.

v v v v v
v v v v v

v v v v v
v v v v v

v v v v v

z z
z z z

z z
z z z

z z



Hecke Operators for Arithmetic Groups via Cell Complexes 15

Congruence Subgroups

Let Γ(N) = {γ ∈ SLn(Z) | γ ≡ I mod N}.

Say Γ′ is a congruence subgroup of level N if there is an N such
that Γ(N) ⊆ Γ′ ⊆ Γ. (Example: Γ0(N).) All congruence subgroups
are of finite index in Γ. The locally symmetric space Γ′\X has an
interpretation as a space of lattices with extra structure. Hecke
correspondences are defined as before:

(Γ′ ∩ α−1Γ′α)\X

c1 ↓ ↓ c2

Γ\X

The Hecke correspondences generate a polynomial algebra. (Must
modify the generators slightly when p | N .)
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Connections with Automorphic Forms

Let V be a Γ′-module. In this talk, V will be defined over R or C.
Often V = C with trivial Γ′-action (“constant coefficients”).

Let ω ∈ Hi(Γ′\X;V ). A Hecke correspondence acts on cohomology
by ω 7→ c2∗c

∗
1ω. We say the Hecke correspondences descend to a

ring of Hecke operators on cohomology.
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Cuspidal Cohomology

We always use ω ∈ Hi(Γ′\X;V ) to denote a cuspidal cohomology
class.

• A cuspidal differential form is a differential form with
coefficients in V satisfying certain vanishing conditions as you
go out to infinity (toward the cusps) in Γ′\X. It is rapidly
decreasing, and appropriate integrals vanish over the parabolic
subgroup associated to each cusp.

• A cohomology class is cuspidal if it is supported on a cuspidal
differential form.

The cuspidal cohomology is one building block of H∗(Γ′\X;V ).
The rest of Hi is not cuspidal, but comes from the cuspidal
cohomology of other groups. Often Eisenstein classes connect the
cohomology of the big space with the cuspidal part of lower-rank
subgroups of G.
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The Hecke polynomial

Also, we always assume ω ∈ Hi(Γ′\X;V ) is an eigenclass for the
Hecke operators.

Let a(p, k) be the eigenvalue for T (p, k). Define the Hecke
polynomial by

P (ω, p) =
n∑

k=0

(−1)kpk(k−1)/2a(p, k)T k.
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Frobenius

For any finite Galois extension Q(β)/Q, if p is unramified in Q(β),
there is an element Frobp ∈ Gal(Q(β)/Q), well-defined up to
conjugacy, called the Frobenius element. Characterized by saying it
pushes forward to the generator of the Galois extension Fp(β̄)/Fp

given by x 7→ xp.

Let GQ = Gal(Q̄/Q). The algebraic closure Q̄/Q is an inverse
limit of finite Galois extensions, compact in the natural topology.
∃Frobp ∈ Gal(Q(β)/Q), the limit of the finite ones, defined up to
conjugacy.
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We now come to the main point of the talk, the conjecture we want
to test.

Conjecture. Let ω ∈ Hi(Γ′\X;V ) be a cuspidal Hecke eigenclass.

Then there is a number field F with ring of integers B, such that

for any prime l and prime λ of B lying over l, there is a continuous

semi-simple Galois representation

ρ : GQ → GLn(Bλ),

unramified outside lN , and such that, for any prime p - lN , the

characteristic polynomial of ρ(Frob−1
p ) is the Hecke polynomial

P (ω, p).

• Relates topology (ω) with number theory (ρ(Frob−1
p )).

• We say that ρ, if it exists, is attached to ω.
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Source of the conjecture

Comes from the world of motives and the Langlands program.

For SL2, the conjecture is known. (Hecke, Weil, Eichler, Shimura,
Deligne.) X = h, the upper half-plane. Γ′\h is a modular curve.
ω comes from a cusp form of weight 2 on the modular curve. The
Hecke correspondences cut out an abelian subvariety
A ⊆ Jac(Γ′\h). The points of order lm (as m →∞) on A(Q̄) are
∼= Bλ ×Bλ. Galois acts on this product, giving a 2-dimensional ρ.
The motive is A, or really H1(A).

Both sides of the conjecture are independent of l. The motive is the
“l-adic cohomology without the l.”
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For n > 2 there is no obvious candidate for a motive. The locally
symmetric space Γ′\X is no longer an algebraic variety.

Nevertheless, standard conjectures would attach a motive to each
cuspidal automorphic representation Π of GLn over a number field,
as long as the infinity type of Π is algebraic. One knows that if Π
arises from a cuspidal ω where V is a rational representation,
then Π satisfies this algebraicity condition. There would be a Galois
representation ρ coming from the motive, giving the conjecture as
stated that relates the Hecke eigenvalues of ω to ρ(Frob−1

p ).
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Computational Topology

We are able to

• compute Hi(Γ′\X;V ) explicitly by machine;

• compute the action of the Hecke operators;

• check the conjecture computationally.
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The Well-Rounded Retract

Recall X is the space of marked lattices L in Rn. Let

m(L) = min{‖v‖ | v ∈ L,v 6= 0}.

The minimal vectors of L are

M(L) = {v ∈ L | ‖v‖ = m(L)}.

Say L is well-rounded if M(L) spans Rn.

Definition. The well-rounded retract W is the set of all
well-rounded lattices in X.
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The Well-Rounded Retract for SL2

The short vectors M(L) = {±e1} are on the circle. Keep x fixed,
and shrink y vertically, till ±e2 also touches the circle. Then
M(L) = {±e1,±e2} will span R2, and L will be well-rounded.
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Classical Fundamental Domain for SL2(Z)
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The Well-Rounded Retract for SL2(Z)

(For all n, W is dual to the Voronöı decomposition of X.)
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Top Cell for SL3(Z) (The Soulé Cube)

Four cubes meet at each triangle. Three meet at each hexagon.
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The Well-Rounded Retract in general

• W is a locally finite cell complex.

• Γ acts on W , preserving the cells.

• There are only finitely many types of cells mod Γ′.

• W is a Γ-invariant deformation retract of X.

• The deformation retraction is a sequence of geodesic flows
on X [Ash-M., 1996].

• Γ′\W is a finite cell complex and is a deformation retract of
Γ′\X.

• Hi(Γ′\W ;V ) = Hi(Γ′\X;V ), and we can find the groups for
Γ′\W by computer.
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Computing Hecke Operators

Trouble: W is not carried into itself by Hecke operators. The
deformation retraction T (p, k)(W ) → W is many-to-many and
complicated.

For SL2(Z), use the modular symbol algorithm (Manin).

Ash-Rudolph have an algorithm for all SLn, generalizing continued
fractions. It only works for Hd(Γ′\X;V ), where d is the v.c.d. (top
degree).

Gunnells has an algorithm based on the detailed structure of W

and the Voronöı decomposition. It works for Hi for some i < d.
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AGM III

Rest of the talk is on [Ash, Gunnells, M. 2009], the first
computational work of this type for GL4.

From now on, n = 4, Γ′ = Γ0(N), and V = C (constant
coefficients).

For GL4, cuspidal cohomology lies only in H4 and H5, and these
are dual to each other. Look at H5. The v.c.d. is 6, and Gunnells’
Hecke algorithm works on H5 (codimension 1).
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We decompose H5 into Hecke eigenspaces for T (p, k) for p as large
as we can. On each eigenspace, we compute the Hecke polynomials
and factor them, which says how Frob−1

p acts on the eigenspace.

Say ρ seems to be attached to ω if the conjecture is satisfied at all
the p you can compute before your machine runs out of memory.

Often just the T (2, k) are enough to suggest how ρ decomposes.

Example. If a Hecke polynomial (degree 4) factors as
(linear)(linear)(quadratic), it strongly suggests this is not a
cuspidal eigenspace. Rather, it comes from an SL2 symmetric space
out at one of the cusps. The quadratic terms will be the Hecke
polynomial for some newform of weight 2 or 4. The two linear
terms are twists by a power of the cyclotomic character.



Hecke Operators for Arithmetic Groups via Cell Complexes 33

Results for GL4

We computed H5(Γ0(N);C) for all N up into the mid-50s, and for
all prime N ≤ 211.

We found Eisensteinian cohomology coming from the cusps for SL2

as expected. Also for SL3 [Ash, Grayson, Green 1984].

We found that the cuspidal part consists of functorial lifts of Siegel
modular forms from paramodular subgroups of Sp4(Q) that are not
Gritsenko lifts. These correspond to selfdual automorphic
representations on GL(4)/Q.
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Autochthonous Forms?

We were hoping to find non-lifted cuspidal cohomology classes,
which would corresponded to non-selfdual automorphic
representations. These would be autochthonous, not coming from
any lower-rank group. Need higher N?
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Linear Algebra Issues

For GL4, the cochain complex computing H5(Γ0(N)\W ) has
matrices d5 and d4 with d5d4 = 0. The matrices have size

d5 = N3/96×N3/10 d4 = N3/10×N3/3

For N = 211, d4 is 944, 046× 3, 277, 686.

The matrices are very sparse: only up to 6 entries per column, and
26 per row, independent of N .

We find the Smith normal form of the matrices, e.g., d4 = P4D4Q4,
where P4 and Q4 have det ±1, and D4 is diagonal in SNF.

We prefer to work over Z (arbitrary precision). That gives the
torsion in the cohomology over Z, as well as the rank over C. We
do this for N up to the 30s. Thereafter, to avoid integer explosion,
we work over a fixed finite field (set C = F12379).
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To find Hecke, we must compute and store the change of basis
matrices P and Q. This rules out some of the leading linear algebra
techniques:

• reduce d4 mod p for many 16-bit p, compute the D4 for each p,
and reassemble the SNF over Z by Chinese remaindering.
(Dumas et al.) It is unknown how do to this while
remembering P and Q.

• Iterative methods (Krylov subspaces, Wiedemann, Lanczos).
E.g., these solve Ax = b linear algebra problems without
reducing A.

• Essentially no low-valence rows and columns.

Instead, M. has developed Sheafhom. It uses classical methods like
Gaussian elimination, but orders the steps differently and uses
special data structures. It solved N = 211 on a 4G Linux laptop.


