Uses of Class
repthy.OrthonormalityException

Uses of OrthonormalityException in repthy
 

Methods in repthy that throw OrthonormalityException
protected  void C_n.fillInCharTable()
          Handles the cyclic case directly.
static void C_n.main(String[] args)
          For testing.
static void PSL3b.main(String[] args)
          Give it one argument, p.
protected  void AbelianGroup.fillInCharTable()
          Computes the character table directly from the Smith normal form.
protected  void S_n.fillInCharTable()
          The tables for S1 through S5 are hard-coded; the rest are computed by the super method.
static void S_n.main(String[] args)
          For testing.
protected  void D_2n.fillInCharTable()
          Handles the dihedral case directly.
static void D_2n.main(String[] args)
          For testing the dihedral group of order 2n.
protected  void Q_8.fillInCharTable()
          This group is handled directly.
static void Q_8.main(String[] args)
          For testing.
protected  void ProductGroup.fillInCharTable()
          Takes the characters currently in the character tables of the factors, pull them back to the product, takes all the tensor products of the pullbacks, and puts them in the character table of the product.
 void CharTable.add(GpCharacter chi)
          Adds chi to the character table.
 void CharTable.addIfNew(GpCharacter chi)
          If the argument is not already in the table (up to equals), put it in using CharTable.add(repthy.GpCharacter); if it is in the table, do nothing.
protected  void A_n.fillInCharTable()
          The tables for A1 through A5 are hard-coded; the rest are computed by the super method.
static void A_n.main(String[] args)
          For testing.
protected  void Group.fillInCharTable()
          Fills in the character table.
static void Group.tableTest(Group G, String nameG)
          For testing; displays the character table in a window and decomposes some sample representations.
protected  void PGroup.fillInCharTable()
          Fills in the character table using a special algorithm for p-groups.