|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Uses of GroupElt in repthy |
| Classes in repthy that implement GroupElt | |
class |
MatrixModp
Square matrices with byte entries modulo a
rational prime p. |
class |
PermGpElt
Stores a permutation of the integers 0, 1, ..., deg-1. |
class |
PMatrixModp
Square matrices modulo a byte p as in the
superclass MatrixModp, but modulo scalar multiples of the
identity. |
class |
ProductGroupElt
An element of a ProductGroup. |
class |
PSLEltModp
A PMatrixModp that's known at construction time to have
determinant equal to an n-th root of unity. |
class |
QuotientGroupElt
An element "g modulo H", where g is an element of the group G and H is a subgroup of G. |
| Fields in repthy declared as GroupElt | |
protected GroupElt[] |
HeckeAlgebra.dblCosetReps
Caches the result of HeckeAlgebra.makeDblCosetReps(). |
| Methods in repthy that return GroupElt | |
protected GroupElt[] |
HeckeAlg_PGL_U.makeDblCosetReps()
|
GroupElt |
QuotientGroupElt.mult(GroupElt y)
|
GroupElt |
QuotientGroupElt.inverse()
|
GroupElt |
QuotientGroupElt.getIdentity()
|
GroupElt |
QuotientGroupElt.conjugate(GroupElt y)
|
GroupElt |
QuotientGroupElt.conjugateYinvXY(GroupElt y)
|
GroupElt |
QuotientGroupElt.power(int i)
|
protected GroupElt[] |
HeckeAlg_GL_U.makeDblCosetReps()
|
GroupElt |
C_n.getGenerator()
|
GroupElt |
ProductGroupElt.mult(GroupElt y)
|
GroupElt |
ProductGroupElt.inverse()
|
GroupElt |
ProductGroupElt.getIdentity()
|
GroupElt |
ProductGroupElt.conjugate(GroupElt y)
|
GroupElt |
ProductGroupElt.conjugateYinvXY(GroupElt y)
|
GroupElt |
ProductGroupElt.power(int i)
|
GroupElt |
ProductGroupElt.getFactor1()
|
GroupElt |
ProductGroupElt.getFactor2()
|
GroupElt |
PMatrixModp.mult(GroupElt y)
|
GroupElt |
PMatrixModp.inverse()
|
GroupElt |
PMatrixModp.getIdentity()
|
GroupElt |
PMatrixModp.conjugate(GroupElt y)
|
GroupElt |
PMatrixModp.conjugateYinvXY(GroupElt y)
|
GroupElt |
MatrixModp.mult(GroupElt y)
|
GroupElt |
MatrixModp.inverse()
|
GroupElt |
MatrixModp.getIdentity()
|
GroupElt |
MatrixModp.conjugate(GroupElt y)
|
GroupElt |
MatrixModp.conjugateYinvXY(GroupElt y)
|
GroupElt |
MatrixModp.power(int i)
|
protected GroupElt[] |
HeckeAlg_GL_B.makeDblCosetReps()
|
protected abstract GroupElt[] |
HeckeAlgebra.makeDblCosetReps()
Returns an array of double-coset representatives for H\G/H. |
GroupElt[] |
HeckeAlgebra.getDblCosetReps()
Returns a clone of the array of double-coset representatives provided by HeckeAlgebra.makeDblCosetReps(). |
GroupElt |
HomomorphismFunc.apply(GroupElt g)
|
GroupElt |
PermGpElt.mult(GroupElt y)
Returns this * y, that is, the permutation whose
value on i is this(y(i)). |
GroupElt |
PermGpElt.inverse()
|
GroupElt |
PermGpElt.conjugate(GroupElt y)
Returns y * this * y^(-1). |
GroupElt |
PermGpElt.conjugateYinvXY(GroupElt y)
|
GroupElt |
PermGpElt.getIdentity()
|
GroupElt |
PermGpElt.power(int i)
|
GroupElt |
Homomorphism.apply(GroupElt g)
Returns the value of this homomorphism on the element g of the source. |
GroupElt |
GroupElt.mult(GroupElt y)
Returns the product this * y. |
GroupElt |
GroupElt.inverse()
Returns the inverse element for this. |
GroupElt |
GroupElt.getIdentity()
Returns the identity element of the same class as this. |
GroupElt |
GroupElt.conjugate(GroupElt y)
Returns y * this * y^(-1). |
GroupElt |
GroupElt.conjugateYinvXY(GroupElt y)
Returns y^(-1) * this * y. |
GroupElt |
GroupElt.power(int i)
Returns the i-th power of this element. |
GroupElt |
Group.getConjClassRep(int i)
Returns some element of the i-th conjugacy class.
|
GroupElt |
Group.getIdentity()
Returns a GroupElt that is the identity for this group,
up to equals(java.lang.Object). |
static GroupElt |
Group.power(GroupElt g,
int i)
Returns the i-th power of g. |
| Methods in repthy with parameters of type GroupElt | |
GroupElt |
QuotientGroupElt.mult(GroupElt y)
|
GroupElt |
QuotientGroupElt.conjugate(GroupElt y)
|
GroupElt |
QuotientGroupElt.conjugateYinvXY(GroupElt y)
|
boolean |
QuotientGroupElt.commutesWith(GroupElt y)
|
int |
C_n.getConjClassIndex(GroupElt x)
Returns i such that x is in the i-th
conjugacy class. |
int |
PSL3b.getConjClassIndex(GroupElt g)
|
GroupElt |
ProductGroupElt.mult(GroupElt y)
|
GroupElt |
ProductGroupElt.conjugate(GroupElt y)
|
GroupElt |
ProductGroupElt.conjugateYinvXY(GroupElt y)
|
boolean |
ProductGroupElt.commutesWith(GroupElt y)
|
GroupElt |
PMatrixModp.mult(GroupElt y)
|
GroupElt |
PMatrixModp.conjugate(GroupElt y)
|
GroupElt |
PMatrixModp.conjugateYinvXY(GroupElt y)
|
boolean |
PMatrixModp.commutesWith(GroupElt y)
|
GroupElt |
MatrixModp.mult(GroupElt y)
|
GroupElt |
MatrixModp.conjugate(GroupElt y)
|
GroupElt |
MatrixModp.conjugateYinvXY(GroupElt y)
|
boolean |
MatrixModp.commutesWith(GroupElt y)
|
int |
HeckeAlgebra.getDblCosetIndex(GroupElt g)
Returns i such that the argument is in the
i-th double coset. |
GroupElt |
HomomorphismFunc.apply(GroupElt g)
|
GroupElt |
PermGpElt.mult(GroupElt y)
Returns this * y, that is, the permutation whose
value on i is this(y(i)). |
GroupElt |
PermGpElt.conjugate(GroupElt y)
Returns y * this * y^(-1). |
GroupElt |
PermGpElt.conjugateYinvXY(GroupElt y)
|
boolean |
PermGpElt.commutesWith(GroupElt y)
Returns whether this and the argument commute. |
static HashHomom |
HashHomom.make(Group sou,
GroupElt[] souGen,
Group tar,
GroupElt[] tarImages)
Returns the homomorphism from sou to
tar sending the generators souGen to
the corresponding elements tarImages, or returns
null to indicate that such a homomorphism does not exist. |
GroupElt |
Homomorphism.apply(GroupElt g)
Returns the value of this homomorphism on the element g of the source. |
Complex |
ClassFunction.apply(GroupElt g)
Returns the value of the function at g. |
GroupElt |
GroupElt.mult(GroupElt y)
Returns the product this * y. |
GroupElt |
GroupElt.conjugate(GroupElt y)
Returns y * this * y^(-1). |
GroupElt |
GroupElt.conjugateYinvXY(GroupElt y)
Returns y^(-1) * this * y. |
boolean |
GroupElt.commutesWith(GroupElt y)
Whether this and y commute. |
abstract int |
Group.getConjClassIndex(GroupElt g)
Returns i such that g is in the i-th
conjugacy class. |
static int |
Group.getEltOrder(GroupElt g,
Group G)
Finds the order of the element g.
|
static int |
Group.getEltOrder(GroupElt g,
int N,
int[][] fac)
Finds the order of the element g.
|
static GroupElt |
Group.power(GroupElt g,
int i)
Returns the i-th power of g. |
Subgroup |
Group.getCentralizer(GroupElt g)
Returns the centralizer of g in this group. |
boolean |
Group.isCentral(GroupElt g)
Whether the argument is in the center of this group. |
int |
HashGroup.getConjClassIndex(GroupElt g)
Returns i such that g is in the i-th
conjugacy class. |
| Constructors in repthy with parameters of type GroupElt | |
QuotientGroupElt(GroupElt g,
Subgroup GcontainingH)
Constructor. |
|
C_n(GroupElt g)
Constructor. |
|
ProductGroupElt(GroupElt g1,
GroupElt g2)
|
|
HeckeAlgebraElt(HeckeAlgebra alg,
GroupElt g)
Constructs the element 1*(g) in the algebra. |
|
HashGroup(GroupElt[] generators)
Constructs the group with the given generators. |
|
|
||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||