Uses of Class
repthy.Group

Uses of Group in repthy
 

Subclasses of Group in repthy
 class A_n
          The group A_n consisting of all even permutations of n elements.
 class AbelianGroup
          What's purple and commutes?
 class C_n
          The cyclic group C_n of order n with generator g.
 class D_2n
          The dihedral group D_2n of order 2n, for n geq 3.
 class GL
          The general linear group GL(n, p) over the finite field of p elements.
 class HashGroup
          An implementation of Group backed by a HashSet that holds one copy of each element of the group.
 class PermGp
          A HashGroup in which all the group elements are PermGpElts of the same degree.
 class PGL
          The general linear group PGL(n, p) over the finite field of p elements.
 class PGroup
          A p-group, that is, a group of order pm where p is a prime and m ≥ 0.
 class ProductGroup
          A direct product G1 × G2 of two Groups.
 class ProductGroupInternal
          An internal direct product, where the elements g1, g2 in g1 × g2 lie in a common parent group.
 class PSL
          The projective special linear group PSL(n, p) over the finite field of p elements.
 class PSL3
          Special topics concerning PSL3(p) for a prime p.
 class PSL3b
          Special topics concerning PSL3(p) for a prime p.
 class Q_8
          The quaternionic group of order 8.
 class QuotientGroup
          Given a Subgroup (G, H) where H is a normal subgroup of G, this class is the quotient group G/H, and provides the method QuotientGroup.getQuotientMap() for obtaining the quotient homomorphism from G to G/H.
 class S_n
          The group Sn consisting of all permutations of the integers 0, ..., n-1.
 class SL
          The special linear group SLn(p) over the finite field of p elements.
 

Methods in repthy that return Group
 Group ProductGroupInternal.asInternal()
           
static Group PSL3b.getW(int p)
           
 Group AbelianGroup.getSNF()
          Returns a group with the same elements as this, but exhibited in Smith normal form with the ProductGroup structure as shown.
static Group ProductGroup.iteratedProduct(List list)
          Returns the iterated product of the Groups G1 through Gk making up the given List.
 Group ProductGroup.getFactor1()
           
 Group ProductGroup.getFactor2()
           
 Group Homomorphism.getSource()
          Returns the source (domain).
 Group Homomorphism.getTarget()
          Returns the target.
 Group ClassFunction.getGroup()
          Returns the underlying group.
 Group Subgroup.getGroup()
          Returns the ambient group G.
 Group Subgroup.getSubgroup()
          Returns the subgroup H itself.
 Group Subgroup.sg()
          An alias for Subgroup.getSubgroup().
 Group CharTable.getGroup()
          Returns the underlying group.
 

Methods in repthy with parameters of type Group
 int QuotientGroupElt.getOrder(Group G)
           
 int ProductGroupElt.getOrder(Group G)
           
 int MatrixModp.getOrder(Group G)
           
 int PermGpElt.getOrder(Group G)
          This implementation ignores G.
static HashHomom HashHomom.make(Group sou, GroupElt[] souGen, Group tar, GroupElt[] tarImages)
          Returns the homomorphism from sou to tar sending the generators souGen to the corresponding elements tarImages, or returns null to indicate that such a homomorphism does not exist.
static Homomorphism Homomorphism.identity(Group G, Group G1)
          If G and G1 have the same elements (that is, if G.equals(G1)), this method returns the natural identity map from G to G1.
 int GroupElt.getOrder(Group G)
          Returns the order of this element.
static int Group.getEltOrder(GroupElt g, Group G)
          Finds the order of the element g.
 boolean Group.isSubgroupOf(Group G1)
          Whether this is a subgroup of G1.
static void Group.printTest(Group G)
          Prints all (yes, all) the elements and conjugacy classes to standard output.
static void Group.tableTest(Group G, String nameG)
          For testing; displays the character table in a window and decomposes some sample representations.
 

Constructors in repthy with parameters of type Group
ProductGroupInternal(Group factor1, Group factor2)
          Constructor.
AbelianGroup(Group G)
          Given a Group, this constructs an AbelianGroup with the same elements.
HomomFromFunc(Group sou, Group tar, HomomorphismFunc f)
           
ProductGroup(Group factor1, Group factor2)
           
HashHomom(Group sou, Group tar, Map map)
          Constructs a homomorphism from sou to tar.
ClassFunction(Group G, Complex[] val)
          Constructs the class function on G whose value on the i-th conjugacy class (as returned by getConjClass(int)) is val[i].
GpCharacter(Group G, Complex[] val, int cycloField)
          Constructs the character on G whose value on the i-th conjugacy class (as returned by getConjClass(int)) is val[i].
GpCharacter(Group G, Complex[] val, int cycloField, String name)
          Same as the three-argument constructor, but allows the user to specify the name.
GpCharacter(Group G, int type)
          Constructs the specified character on G.
Subgroup(Group G, Group H)
           
Subgroup(Group G, int type)
          Constructor for special cases.
CharTable(Group G)
          Constructs an empty character table for G.
PGroup(Group s, int p)
          Given a Group and a prime p, this constructs a p-group with the same elements.