|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
ObjectQuotientGroupElt
An element "g modulo H", where g is an element of the group G and H is a subgroup of G.
| Constructor Summary | |
QuotientGroupElt(GroupElt g,
Subgroup GcontainingH)
Constructor. |
|
| Method Summary | |
boolean |
commutesWith(GroupElt y)
Whether this and y commute. |
GroupElt |
conjugate(GroupElt y)
Returns y * this * y^(-1). |
GroupElt |
conjugateYinvXY(GroupElt y)
Returns y^(-1) * this * y. |
boolean |
equals(Object o)
Whether this and o belong to the same
G/H and are equal modulo H. |
GroupElt |
getIdentity()
Returns the identity element of the same class as this. |
int |
getOrder(Group G)
Returns the order of this element. |
int |
hashCode()
Consistent with equals(java.lang.Object). |
GroupElt |
inverse()
Returns the inverse element for this. |
boolean |
isIdentity()
Tests whether this is the identity element among GroupElts of its class. |
GroupElt |
mult(GroupElt y)
Returns the product this * y. |
GroupElt |
power(int i)
Returns the i-th power of this element. |
String |
toString()
|
| Methods inherited from class Object |
clone, finalize, getClass, notify, notifyAll, wait, wait, wait |
| Constructor Detail |
public QuotientGroupElt(GroupElt g,
Subgroup GcontainingH)
IllegalArgumentException - If g is not in
G, or the subgroup is not normal.| Method Detail |
public GroupElt mult(GroupElt y)
GroupEltthis * y. The operation must
be associative.
mult in interface GroupEltpublic GroupElt inverse()
GroupEltthis.
inverse in interface GroupEltpublic boolean equals(Object o)
this and o belong to the same
G/H and are equal modulo H.
equals in interface GroupEltpublic int hashCode()
equals(java.lang.Object).
hashCode in interface GroupEltpublic boolean isIdentity()
GroupEltGroupElts of its class.
isIdentity in interface GroupEltpublic GroupElt getIdentity()
GroupEltthis.
getIdentity in interface GroupEltpublic GroupElt conjugate(GroupElt y)
GroupElty * this * y^(-1). Compare GroupElt.conjugateYinvXY(repthy.GroupElt).
conjugate in interface GroupEltpublic GroupElt conjugateYinvXY(GroupElt y)
GroupElty^(-1) * this * y. Compare GroupElt.conjugate(repthy.GroupElt).
conjugateYinvXY in interface GroupEltpublic boolean commutesWith(GroupElt y)
GroupEltthis and y commute.
commutesWith in interface GroupEltpublic int getOrder(Group G)
GroupEltGroup.getEltOrder(GroupElt, Group). However,
if code needs to compute the order for many elements of a fixed
group, Group.getEltOrder(GroupElt, int, int[][]) may be
more efficient.
getOrder in interface GroupEltG - A group containing this element. It can be null, but
if it's not, we can use a more efficient algorithm.public GroupElt power(int i)
GroupEltGroup.power(repthy.GroupElt, int), which uses an efficient
squaring algorithm.
power in interface GroupEltpublic String toString()
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||