repthy
Class QuotientGroup

Object
  extended byAbstractCollection
      extended byAbstractSet
          extended byImmutableSet
              extended byGroup
                  extended byHashGroup
                      extended byQuotientGroup
All Implemented Interfaces:
Collection, Set

public class QuotientGroup
extends HashGroup

Given a Subgroup (G, H) where H is a normal subgroup of G, this class is the quotient group G/H, and provides the method getQuotientMap() for obtaining the quotient homomorphism from G to G/H.

Author:
Mark McConnell

Field Summary
 
Fields inherited from class Group
charTable
 
Constructor Summary
QuotientGroup(Subgroup GcontainingH)
          Constructor.
 
Method Summary
 Homomorphism getQuotientMap()
           
 Subgroup getSubgp()
          Returns the Subgroup (G, H) that was used to construct this group G/H.
static void main(String[] args)
          As a test, prints a description of S4/(Klein 4-group), which should be S3.
 
Methods inherited from class HashGroup
contains, getConjClass, getConjClassIndex, getConjClassNum, iterator, size
 
Methods inherited from class Group
cyclicSubgpsUpToConj, describeOrder8, elementarySubgps, fillInCharTable, getCenter, getCentralizer, getCharComparator, getCharTable, getCommutatorSubgroup, getCompositionSeries, getConjClassRep, getEltOrder, getEltOrder, getIdentity, getOrder, getProperNormalSubgroup, getSylow, isAbelian, isCentral, isSimple, isSubgroupOf, order, power, printTest, tableTest
 
Methods inherited from class ImmutableSet
add, addAll, clear, remove, removeAll, retainAll
 
Methods inherited from class AbstractSet
equals, hashCode
 
Methods inherited from class AbstractCollection
containsAll, isEmpty, toArray, toArray, toString
 
Methods inherited from class Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface Set
containsAll, isEmpty, toArray, toArray
 

Constructor Detail

QuotientGroup

public QuotientGroup(Subgroup GcontainingH)
Constructor.

Throws:
IllegalArgumentException - If H is not normal in G.
Method Detail

getSubgp

public Subgroup getSubgp()
Returns the Subgroup (G, H) that was used to construct this group G/H.


getQuotientMap

public Homomorphism getQuotientMap()

main

public static void main(String[] args)
As a test, prints a description of S4/(Klein 4-group), which should be S3.