|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
ObjectHeckeAlgebra
The Hecke algebra HZ(G, H) for the double-coset space H\G/H.
Subclasses must call init() at the end of their
constructors.
G should be small enough that all its elements can be
stored in memory at the same time. For instance, it's probably
okay if G is a HashGroup.
| Field Summary | |
protected GroupElt[] |
dblCosetReps
Caches the result of makeDblCosetReps(). |
protected HashSet[] |
dblCosets
Caches the double cosets H gi H, where gi = dblCosetReps[i]. |
protected Subgroup |
GH
Caches the result of makeSubgroup(). |
| Constructor Summary | |
HeckeAlgebra()
|
|
| Method Summary | |
int |
getDblCosetCount()
Returns the number of double cosets in H\G/H, which is the same as the Z-rank of the algebra. |
int |
getDblCosetIndex(GroupElt g)
Returns i such that the argument is in the
i-th double coset. |
GroupElt[] |
getDblCosetReps()
Returns a clone of the array of double-coset representatives provided by makeDblCosetReps(). |
Subgroup |
getSubgroup()
Returns the subgroup (G, H). |
protected void |
init()
Any subclass must call this at the end of its constructors. |
protected abstract GroupElt[] |
makeDblCosetReps()
Returns an array of double-coset representatives for H\G/H. |
protected abstract Subgroup |
makeSubgroup()
Returns the subgroup (G, H). |
| Methods inherited from class Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Field Detail |
protected Subgroup GH
makeSubgroup().
protected GroupElt[] dblCosetReps
makeDblCosetReps().
protected HashSet[] dblCosets
dblCosetReps[i].
| Constructor Detail |
public HeckeAlgebra()
| Method Detail |
protected abstract Subgroup makeSubgroup()
getSubgroup() instead of this method.
protected abstract GroupElt[] makeDblCosetReps()
getDblCosetReps() instead of this method.
protected void init()
public final int getDblCosetCount()
public GroupElt[] getDblCosetReps()
makeDblCosetReps(). These correspond to
generators of the Hecke algebra as Z-module.
public final Subgroup getSubgroup()
public int getDblCosetIndex(GroupElt g)
i such that the argument is in the
i-th double coset. Returns -1 if the argument is
not found.
|
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||