
1.1 - Definition and Examples of Ω-algebras

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Operations rise quite often in mathematics. Ever tend to notice how monoids,
groups, rings, modules, lattices, etc. have similar abilities? This is because each
is a set equipped with certain operations. Any such set can be treated in a
generic way, which leads to the following.

Universal algebra studies morphisms, products and a lot of other topics on
a generalized operation equipment on a set. To see the idea, we must stick to
one batch of operation equipment which we call the signature.

Consider the monoid M , for instance. M is a set with an associative binary
operation ∗ which has a unit 1. The binary operation ∗ should certainly belong
to the signature. Now when we give a set M a binary operation ∗, do we know
whether we result in a monoid? Yes, either the operation is associative or it is
not, and there is at most one element 1 satisfying 1 ∗ x = x = x ∗ 1 for every
x ∈ M [see Exercise 1]. So it appears that ∗ is the only operation to belong to
the signature. That is not quite true, as we are about to see.

A homomorphism of monoids f : M → N satisfies f(1) = 1 and f(xy) =
f(x)f(y) for all x, y ∈ M . If only the binary operation mattered, a homomor-
phism would only need to satisfy f(xy) = f(x)f(y). This is not sufficient, as
there exist maps of monoids that preserve multiplication but do not map 1 to
1. Consider M = N = (Z, ·), for instance. Then if f : M → N is defined by
f(a) = 0 for all a, then f(xy) = f(x)f(y) [since 0 · 0 = 0] but f(1) 6= 1.

So both the binary operation ∗ and the unit 1 are needed to keep things
in hand. Afterwards, we need only regard the identities (xy)z = x(yz) and
1x = x = x1, which don’t affect homomorphisms at all.

Note that if G and H are groups and f : G→ H satisfies f(xy) = f(x)f(y),
then f is a group homomorphism [see Exercise 2]. So in terms of group homo-
morphisms, only the binary operation needs to be regarded. But this is not so
for subgroups. The subset N of the additive group Z is not a subgroup because
1 ∈ N, but its inverse −1 is not in N. It is closed under addition, nevertheless.

Therefore the group’s signature needs to regard the binary operation, the
inverse and the identity. It is then straightforward what the requirements of a
subgroup would be.

To generalize the idea, it is important to know that a set like that has two
things: (1) existential operators; (2) equational identities [axioms of the form
(. . . ) = (. . . )]. Morphisms and subsets that have the equipment need to regard
(1), but not (2). (1) comes in the form of n-ary operators, which are feed n
elements of the set and return an element of the set. As of now, we will stick
to only (1).

Let A be a set, and n a nonnegative integer. If ω is a map An → A sending
(a1, a2, . . . an) to (ωa1a2 . . . an), then ω is an n-ary operator on A. An example
with n = 2 is the binary operation on a monoid. Note that if n = 0, ω is just a
map from the 1-element set {()} to A, which can be thought of as an element
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(ωA) of A. An example of this is the unit 1 of a monoid, which must be regarded
by the signature.

There may be many operators in the signature, but each has a certain de-
gree. This motivates the following definitions.

DEFINITION
A signature is a mathematical object Ω such that for each nonnegative

integer n, Ω(n) is a set, whose elements are called n-ary operators. Ω can be
thought of as ]Ω(n).

If Ω is a signature, an Ω-algebra is a set A such that for each n ≥ 0,
each ω ∈ Ω(n) is associated with a map An → A, where the output under
(a1, a2, . . . an) is denoted (ωa1a2 . . . an). The set is called the carrier of the
Ω-algebra.

EXAMPLES
A vast majority of the following examples have equational identities. How-

ever, it is best that we not generalize the concept of identities until Section
9.

1. Let Ω = {p, 1} where p is binary and 1 is nullary. Then a monoid
is an Ω-algebra satisfying the identities (px(pyz)) = (p(pxy)z); (p(1)x) = x;
(px(1)) = x.

2. Let Ω = {p, 1, i} where p is binary, 1 is nullary and i is unary. Then a
group is an Ω-algebra satisfying the identities (px(pyz)) = (p(pxy)z); (p(1)x) =
x; (px(1)) = x; (px(ix)) = (1); (p(ix)x) = (1). Note that the last identity is
quite redundant; it follows from the other identities.

3. Add the identity (pab) = (pba) to the previous example to get an abelian
group. They form a signature of their own.

4. A ring is an Ω-algebra with even more identities, where Ω(2) = {s, p}
(s sum, p product), Ω(1) = {n} (additive inverse) and Ω(0) = {0, 1}. As
an exercise, write out all the necessary identities; one of them is (px(syz)) =
(s(pxy)(pxz)).

5. A rng is an Ω-algebra where Ω(2) = {s, p}, Ω(1) = {n} and Ω(0) = {0},
and all the ring’s identities that don’t involve 1 are satisfied. A rng can be
thought of as a “ring without unit.”

6. A ring with involution is a ring R with an extra unary operator a→ a∗

satisfying (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, 1∗ = 1 and (a∗)∗ = a. It is easily
seen that there is a signature for rings with involution.

7. If Ω(n) = ∅ for all n, then an Ω-algebra is simply a set. You can think
of this as a set equipped with no operations at all. Ω is called the empty
signature.

8. A pointed set is an Ω-algebra where Ω consists of a single nullary
operator for the base point. It can be thought of as a pair (X,x0), where
x0 ∈ X.

9. A set with involution is an Ω-algebra A where Ω consists of a single
unary operator ∗ and (a∗)∗ = a for all a ∈ A. The operator is called an
involution.
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10. Let R be a fixed ring. Define Ω(2) = {s}, Ω(0) = {0} and Ω(1) = R.
Then an Ω-algebra satisfying the correct identities [such as (r(sx)) = ((rs)x)
when r, s ∈ R] is a left R-module. Note that there is no restriction on the
cardinality of operators or identities.

Warning : There is no signature for all modules. The modules over a given
ring can be put into a signature. It is pertinent to know that there’s no such
thing as a module homomorphism from M to N if they are modules over entirely
different rings.

11. In a similar way right R-modules and R-S-bimodules can be defined.
12. A Lie algebra over a commutative ring R is an R-module L with

a binary operator a, b → [a : b] satisfying [x : (y + z)] = [x : y] + [x : z],
[(x + y) : z] = [x : z] + [y : z], [x : cy] = c[x : y] = [cx : y], [x : x] = 0 and
[x : [y : z]] + [y : [z : x]] + [z : [x : y]] = 0. Once again, this is an Ω-algebra with
identities, and they will be dealt with in Sections 9 and up.

13. An associative algebra over a commutative ring R is a ring A which
is an R-module with the same addition, such that (cx)y = c(xy) = x(cy) for all
c ∈ R, x, y ∈ A. For example, the matrix ring Mn(R) is an associative algebra
over R.

14. A magma is a set equipped with a binary operation. It does not require
any identities. A semigroup is a magma whose operation is associative; i.e.
satisfies the identity (pa(pbc)) = (p(pab)c). Thus a monoid is a semigroup with
an identity element.

15. A lattice is an Ω-algebra where Ω(2) = {∧,∨} satisfying (a ∧ b) ∧ c =
a∧ (b∧ c), (a∨ b)∨ c = a∨ (b∨ c), a∧ b = b∧ a, a∨ b = b∨ a, a∧ a = a = a∨ a,
a ∧ (a ∨ b) = a = a ∨ (a ∧ b).

16. Let M be a monoid. An M -action is an Ω-algebra X with Ω(1) = M
[that is, a set X along with a map M × X → X] satisfying 1x = x and
(mn)x = m(nx) for m,n ∈ M , x ∈ X. Thus a set with involution is an
M -action where M is the group Z2.

You should be convinced that there are loads of different kinds of Ω-algebras.
This is why we should be able to give general proofs that work for all of them.

New Signatures from Old Ones

If Ω1 and Ω2 are signatures, Ω2 is said to be an extension of Ω1 provided that
Ω1(n) ⊆ Ω2(n) for all n. In this case, every Ω2-algebra is an Ω1-algebra.

EXAMPLES
Note that the definition of an extension can be rephrased when identities

are involved. But like we said, we are not dealing with identities quite yet.
1. The group’s signature is an extension of the monoid’s, which is an exten-

sion of the semigroup’s, which is an extension of the magma’s.
2. The ring’s signature is an extension of the rng’s, where the identity is

added. The signature for the ring with involution is an extension of the ring’s
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signature. The rng’s signature is an extension of the signature for an abelian
group (because a rng is an abelian group under addition).

3. Every signature is an extension of the empty signature for sets, because
∅ ⊆ Ω(n) whenever Ω is a signature. This works as promised; an Ω-algebra is a
set.

4. If F is a field, then associative algebras over F are an extension of rings,
and also an extension of vector spaces over F . Lie algebras over F are an
extension of vector spaces over F .

5. Note that a monoid is actually an extension of a pointed set, because a
monoid M can have the weaker treatment as a pointed set with base point 1.

6. Abelian groups are an extension of groups, and commutative rings are an
extension of rings.

New Ω-algebras from Old Ones

It is high time we stop talking about all the different signatures, and from this
point, focus on a single signature Ω. Can two Ω-algebras A and B be combined,
in a generic way that doesn’t depend on Ω? The answer is yes: we define A×B
to be the usual Cartesian product of sets, and for each n ∈ Ω(n), we define

(ω(a1, b1)(a2, b2) . . . (an, bn)) = ((ωa1a2 . . . an), (ωb1b2 . . . bn))

For instance, if A and B are sets with involution, A×B is defined by (a, b)∗ =
(a∗, b∗).

Now suppose A is an Ω-algebra and S is a set. [S need not be an Ω-algebra
at all.] One can define an Ω-algebra structure on the set AS of functions S → A
thus: for ω ∈ Ω(n) and f1, f2, . . . fn ∈ AS , (ωf1f2 . . . fn) : S → A is defined by
(ωf1f2 . . . fn)(s) = (ωf1(s)f2(s) . . . fn(s)).

This is a vague introduction to Ω-algebras. It should be easy to remember
in the future sections.

EXERCISES

1. If M is a set equipped with a binary operation ∗, prove that there is at
most one 1 ∈M such that 1 ∗ x = x = x ∗ 1 for every x ∈M .

2. Let G and H be groups. If f : G → H such that f(xy) = f(x)f(y) for
all x, y ∈ G, prove that f is a homomorphism. [You need to show that
f(e) = e and f(x−1) = f(x)−1 for all x ∈ G.]

3. What is wrong with the following argument that subgroups of a group need
not regard the identity element? “If H is a subgroup of G and a ∈ H,
then a−1 ∈ H since the inverse of an element of H is also in H. Further-
more, aa−1 = e ∈ H since H is closed under multiplication. Therefore,
every subset of G closed under multiplication and inverses automatically
contains the identity element.”
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4. Let G be a semigroup.

(a) If there exists e ∈ G such that ea = a for all a and for each a ∈ G,
there exists d ∈ G such that da = e, prove that G is a group.

(b) If there exists e ∈ G such that ea = a for all a and for each a ∈ G,
there exists d ∈ G such that ad = e, show by example that G may not be
a group.

(c) If G is finite and nonempty, and whenever ab = ac or ba = ca then
b = c, prove that G is group.

(d) Show by example that (c) may be false if G is infinite.

(e) If G is nonempty and for all a, b ∈ G, there exist x, y ∈ G such that
ax = b = ya, prove that G is a group.

5. For a Boolean algebra, what are all the operations needed in the signature?

6. Show that an associative algebra A over a commutative ring R is a Lie
algebra given by [a : b] = ab− ba for a, b ∈ A.

7. If L is a Lie algebra over R, prove that [a : b] = −[b : a] for a, b ∈ L. [Hint :
Expand [(a+ b) : (a+ b)].]

8. (a) Show that every signature Ω is an extension of Ω.

(b) Show that if Ω3 is an extension of Ω2 and Ω2 is an extension of Ω1,
then Ω3 is an extension of Ω1.

9. Let T (Ω) be the 1-element set {ε}, where for each ω ∈ Ω(n), (ωεε . . . ε) = ε.
Convince yourself that T (Ω) is an Ω-algebra. It is called the terminal or
trivial Ω-algebra.
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1.2 - Subalgebras and Products

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Recall the Ω-algebra from last chapter. What subsets are also Ω-algebras under
the operations in Ω? Well, the ones that are closed under the operations. Sec-
tion 9 shows that any equational identity holding in an Ω-algebra must also hold
in each subset closed under the operations. This yields the following definition.

DEFINITION
Let A be an Ω-algebra. A subset B of A is called a subalgebra of A provided

that whenever ω ∈ Ω(n) and a1, a2, . . . an ∈ B, then (ωa1a2 . . . an) ∈ B. When
n = 0, it is understood that B contains every nullary (ωA) ∈ A.

Note: Most authors require every Ω-algebra to be nonempty. This yields dif-
ferences in the future lessons. I personally think that an Ω-algebra should not
be required to be nonempty unless it follows from the equipment. See Exercise 1.

If B is a subalgebra of A, the first pertinent thing to be able to view B as an
Ω-algebra itself under the operations in A. Then it is clear that A is a subalge-
bra of A, and a subalgebra C of a subalgebra B of A is a subalgebra of A.

EXAMPLES
1. Let G be a group and H a subgroup of G. Then H is a group under the

operation in G. The converse actually holds in this case: if H is a subset of G
which is a group under the binary operation in G, then H is a subgroup of G.
This is because, for example, if a ∈ G and ab = b for at least one b ∈ G, then
a = e.

2. If M is a monoid, a subset of M which is a monoid under M ’s binary
operation need not be a submonoid of M . Consider M = (Z6, ·), for instance.
Let N = {[0], [2], [4]} ⊆ M . Then N is a monoid under multiplication [with
identity [4]], but N is not a submonoid of M because [1] /∈ N . A submonoid of
M must be a monoid under M ’s multiplication and identity element.

3. If Ω-algebras are pointed sets, a subalgebra of (X,x0) is a subset of X
containing x0.

4. Yeah...let’s cut the examples.

Let Sub A be the set of subalgebras of A. We claim that Sub A is a complete
lattice under inclusion [i.e. a lattice in which every nonempty subset has a sup
and an inf]. It all follows from quite a basic lemma:

LEMMA 1.1 Let L be a partially ordered set with a largest element 1 such that
every nonempty subset has an inf. Then L is a complete lattice.

Proof of Lemma 1.1. We need to show that every nonempty subset S ⊆ L has
a sup. Let S = {a ∈ L | s ≤ a ∀s ∈ S} be the set of upper bounds of S. 1 ∈ S
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so S is nonempty. Therefore, by hypothesis, S has an inf u. Since each s ∈ S
is a lower bound of S, s ≤ u and u is an upper bound of S. If v is any other
upper bound of S, then v ∈ S, and hence, u ≤ v. Therefore, u is a sup of S. �

THEOREM 1.2 If A is an Ω-algebra, then Sub A is a complete lattice under
inclusion.

Proof of Theorem 1.2. Sub A is clearly a poset under inclusion. Also, A ∈ Sub A
is largest in the poset. Now let {Aα} be a nonempty family of subalgebras of
A. Exercise 2 shows that the intersection ∩Aα is a subalgebra of A, and it is
seen to be the inf of {Aα}. Therefore, Sub A has a largest element and every
nonempty subset has an inf. We can then apply Lemma 1.1 and conclude that
Sub A is a complete lattice. �

According to Theorem 1.2, any family {Aα} of subalgebras of A has a least upper
bound. This does not mean the union ∪Aα is necessarily a subalgebra of A.
Rather, it means there is a subalgebra of A containing the Aα that’s contained
in every subalgebra of A containing the Aα. This subalgebra is denoted as ∨Aα.

However, there is a rather important case in which the union ∪Aα is a
subalgebra; see Exercise 3.

But unions of subalgebras aren’t the only things that can generate subalge-
bras. In fact, any subset of A generates a subalgebra according to the following
theorem. Recall that in the proof of Lemma 1.1, we showed that the sup of a
set is the inf of its upper bounds. This gives us a clue as to what to do.

For X ⊆ A, define the subalgebra of A generated by X — denoted 〈X〉
— to be the intersection of all subalgebras of A containing X. Note that at
least one subalgebra of A contains X — namely A itself.

THEOREM 1.3 Let X be a subset of an Ω-algebra A. Then:
(1) 〈X〉 is a subalgebra of A containing X.
(2) Whenever B is a subalgebra of A containing X, 〈X〉 ⊆ B.
(3) 〈X〉 is the only subalgebra of A with properties (1) and (2).

Proof of Theorem 1.3. (1) 〈X〉 is the intersection of subalgebras of A, which is
a subalgebra of A by Exercise 2. Since X is contained in every operand set, it
is contained in the intersection.

(2) If B is a subalgebra of A containing X, then B is one of the operands
that 〈X〉 is the intersection of; hence, 〈X〉 ⊆ B.

(3) Suppose X ′ is another subalgebra of A satisfying properties (1) and (2).
Since X ′ is a subalgebra of A containing X, then 〈X〉 ⊆ X ′ by (2). Reversing
the roles, since 〈X〉 is a subalgebra of A containing X and every such subalgebra
contains X ′, then X ′ ⊆ 〈X〉. Therefore, X ′ = 〈X〉, and 〈X〉 is unique. �

One can think of ∨Aα as 〈∪Aα〉 according to the last theorem. It is the smallest
subalgebra of A containing every Aα.
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Arbitrary Products

We recall the constructions of A × B and AS from the last chapter. They are
just special cases of the following.

DEFINITION
Let {Aα} be an indexed collection of Ω-algebras. Now let A be the set product

ΠAα and for a ∈ A, denote as aα the component of a in place α. Then A
becomes an Ω-algebra where ω ∈ Ω(n) is defined as:

(ωa1a2 . . . an)α = (ωa1αa
2
α . . . a

n
α)

for each a1, a2, . . . an ∈ A and component index α.

Note that there is no restriction on the cardinality of {Aα}. The next section
shows how A×B can be viewed as a product of A and B, and that AS can be
viewed as a product of as many A’s as elements of S.

When A1, A2, . . . An are finitely many Ω-algebras, the product is denoted
ΠAi or A1 ×A2 × · · · ×An.

Note, by the way, that Section 9 shows that identities are safely preserved
by the product.

EXERCISES

1. Show that every Ω-algebra is nonempty if and only if Ω(0) is nonempty
[i.e. Ω has a nullary operator].

2. If {Aα} is a nonempty family of subalgebras of A, prove that the intersec-
tion ∩Aα is a subalgebra of A.

3. Now suppose A1 ⊆ A2 ⊆ A3 ⊆ . . . is an ascending chain of subalgebras of
A. Prove that the union ∪Ai is a subalgebra of A. [Hint : If a1, a2, . . . an ∈
∪Ai, each of them is in one of the algebras in the chain. Why must one
of the algebras contain all of them?]

4. Let A1, A2, . . . An be Ω-algebras. Show that A = A1×A2×· · ·×An is finite
if and only if all the Ai are, and that |A| = |A1||A2| . . . |An|. Conclude
that A is empty if and only if at least one of the Ai is.

5. (a) If {Aα} is an indexed collection of Ω-algebras and Bα is a subalgebra
of Aα for every α, prove that ΠBα is a subalgebra of ΠAα.

(b) Give an example to show that a subalgebra of ΠAα need not be de-
scribed like such.
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1.3 - Homomorphisms and Isomorphisms

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

A homomorphism of Ω-algebras is a map that preserves structure. These maps
are more important than any maps, since structure is mostly what we care for.
To get a rigorous definition of a homomorphism, we must recall the structure
of an Ω-algebra.

If A is an Ω-algebra, an n-ary operator corresponds to a map ω : An → A
mapping a1, a2, . . . an to (ωa1a2 . . . an). Now let f : A → B be a function. It
is generous to say that f preserves ω if whenever it maps ai ∈ A to bi ∈ B, it
maps (ωa1a2 . . . an) to (ωb1b2 . . . bn). But we want a quicker way to say this.

Notice that the element of B that f maps ai to is denoted f(ai). Taking
bi = f(ai), we have (ωb1b2 . . . bn) = (ωf(a1)f(a2) . . . f(an)). So our rule is that
f maps (ωa1a2 . . . an) to (ωf(a1)f(a2) . . . f(an)), as seen in the following defi-
nition.

DEFINITION
If A and B are Ω-algebras, a map f : A→ B is said to be a homomorphism

if for all ω ∈ Ω(n) and a1, a2, . . . an ∈ A,

f(ωa1a2 . . . an) = (ωf(a1)f(a2) . . . f(an))

When n = 0 it is understood that the statement says f(ωA) = (ωB). A homo-
morphism that is bijective is called an isomorphism.

Note that this definition does not regard any equational identities. It never will,
as there is no notion of identities being preserved by maps.

EXAMPLES
1. Monoid, group and ring homomorphisms are as usual.
2. If Ω-algebras are pointed sets, a homomorphism (X,x0) → (Y, y0) is a

map f : X → Y satisfying f(x0) = y0.
3. A homomorphism f : M → N of left R-modules satisfies f(a+b) = f(a)+

f(b) and f(ka) = kf(a) for a, b ∈M,k ∈ R. Recall that scalar multiplication is
viewed as |R| unary operators. In this case, our definition of a homomorphism
certainly matches with this one.

4. If M and N are modules over different rings, they are not the same kind
of algebra, so there’s no notion of a homomorphism from M to N , except for
just an abelian group homomorphism.

5. If M is a fixed monoid and X and Y are M -actions, a homomor-
phism f : X → Y is an equivariant map: it satisfies f(mx) = mf(x) for
m ∈M,x ∈ X.

There are a few preliminary things to know about homomorphisms:
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THEOREM 1.4 Let A,B,C be Ω-algebras, f : A → B and g : B → C
homomorphisms. Then:

(1) The composite function gf : A→ C is a homomorphism.
(2) The identity map 1A : A→ A is an isomorphism.
(3) If f is an isomorphism, then so is its inverse f−1 : B → A.

Proof of Theorem 1.4. (1) The statement follows from

gf(ωa1a2 . . . an) = g(ωf(a1)f(a2) . . . f(an)) = (ωgf(a1)gf(a2) . . . gf(an))

for all ω ∈ Ω(n), a1, a2, . . . an ∈ A.
(2) It is clear that 1A is bijective, and that 1A(ωa1a2 . . . an) = (ωa1a2 . . . an) =

(ω1A(a1)1A(a2) . . . 1A(an)).
(3) Since f is a bijection, then so is f−1, and ff−1 = 1B and f−1f = 1A

hold. We need only show that f−1 is a homomorphism:

f−1(ωb1b2 . . . bn) = f−1(ωff−1(b1)ff−1(b2) . . . ff−1(bn))

= f−1f(ωf−1(b1)f−1(b2) . . . f−1(bn)) = (ωf−1(b1)f−1(b2) . . . f−1(bn))

whenever ω ∈ Ω(n) and b1, b2, . . . bn ∈ B. �

An Ω-algebra A is said to be isomorphic to an Ω-algebra B — denoted A ∼= B
— if there exists an isomorphism A → B. Notice that A ∼= A by Theorem
1.4(2), and if A ∼= B then B ∼= A by Theorem 1.4(3). Now suppose A ∼= B and
B ∼= C. Then there exist isomorphisms f : A → B and g : B → C. The map
gf : A → C is a homomorphism by Theorem 1.4(1) and is bijective because f
and g are. Hence, gf is an isomorphism and A ∼= C. Therefore, isomorphism is
an equivalence relation.

Now let’s cut the isomorphism and get to some pertinent homomorphisms.
Let {Aα} be an indexed collection of Ω-algebras and A = ΠAα. Define pα :
A → Aα by pα(a) = aα. Then pα is seen to be a homomorphism because
(ωa1a2 . . . an)α = (ωa1αa

2
α . . . a

n
α) holds. pα is called a projection homomor-

phism. Section 4 of Chapter 2 explains more about this.

Making a Homomorphism Surjective

If f : A→ B is a homomorphism of Ω-algebras, its image f(A) may not be all
of B. However, it is readily seen to be a subalgebra of B, for if ω ∈ Ω(n) and
b1, b2, . . . bn ∈ f(A), each bi = f(ai) for some ai ∈ A. Furthermore,

(ωb1b2 . . . bn) = (ωf(a1)f(a2) . . . f(an)) = f(ωa1a2 . . . an) ∈ f(A)

Hence, f(A) is a subalgebra of B. Conversely, every subalgebra C of B is
the image of some homomorphism into B. Define ι : C → B by ι(c) = c for
all c ∈ C. [This map is seen to fix its subjects while enlarging the outside
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world.] Exercise 1 shows that ι is an injective homomorphism. It is called the
canonical monomorphism [or injection homomorphism] of C into B and
is sometimes denoted C ↪→ B.

The idea of surjectification is to cut the codomain down to a subalgebra
containing the image. Important things to know are that, as shown in (3), in-
jectivity is not affected, and as shown in (4), surjectivity comes from cutting
the codomain down entirely to the image.

THEOREM 1.5 (SURJECTIFICATION) Let f : A→ B be a homomorphism
of Ω-algebras and C a subalgebra of B. If ι : C → B is the canonical monomor-
phism, then:

(1) There exists a homomorphism f1 : A → C such that f = ιf1 [in other
words, that f1(a) = f(a) for all a ∈ A] if and only if f(A) ⊆ C.

If the equivalent conditions in (1) hold, then
(2) f1 is unique;
(3) f1 is injective if and only if f is injective;
(4) f1 is surjective if and only if f(A) = C.

You’re probably wondering if there’s an analogue of this theorem with injectiv-
ity and surjectivity exchanged. The answer is yes, but a new concept in the
next section is needed for this.

Proof of Theorem 1.5. (1) If f(A) ⊆ C, then f(a) ∈ C for all a ∈ A, so one
can clearly define f1 : A → C by f1(a) = f(a). f1 is readily seen to be a
homomorphism. Conversely, if f1 : A → C and f1(a) = f(a) for all a, then
f(a) ∈ C, so that f(A) ⊆ C.

(2) Suppose f ′1 : A → C is also a homomorphism satisfying f = ιf ′1. Then
ιf1 = ιf ′1. Since ι is injective, f1 = f ′1 follows, and f1 is unique.

(3) Since f1(a) = f(a) for all a ∈ A, f1(a) = f1(b) if and only if f(a) = f(b).
So if either one of these statements implies a = b, the other does. Furthermore,
f1 is injective if and only if f is.

(4) Note that f1(A) = f(A), because the maps agree on every element of A.
Since f1 is surjective if and only if its image f1(A) is equal to its codomain C,
this statement follows. �

An important special case of Theorem 1.5 is when f is injective and f(A) = C.
In that case, the map f1 is injective and surjective, so that it is an isomorphism.
This gives us

COROLLARY 1.6 If f : A → B is an injective homomorphism, then A ∼=
f(A).

One can think of an injective homomorphism as an embedding for that reason.
Homomorphisms play an important role in many aspects. There are many

ways to think of their structure, one of which is in Exercise 3.
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EXERCISES

1. Let B be a subalgebra of A and ι : B → A the map defined by ι(b) = b
for all b ∈ B. Show that ι is an injective homomorphism of Ω-algebras.

2. If A is an Ω-algebra and d : A → A × A is defined by d(a) = (a, a) for
all a ∈ A, show that d is an injective homomorphism. [d is called the
diagonal map on A.] Conclude that A ∼= {(a, a) | a ∈ A}.

3. An automorphism of an Ω-algebra A is an isomorphism from A to A.
Show that the set Aut A of all automorphisms of A is a group under the
operation of function composition. Remark : This holds even if A is itself
a group. [Hint : Follow the paragraph after the proof of Theorem 1.4.]

4. Let G be a group and X a set. A group action of G on X is said to be
a map · : G × X → X satisfying ab · x = a · (b · x) and e · x = x for all
a, b ∈ G, x ∈ X. If A is an Ω-algebra, verify that Aut A acts on A given
by σ · a = σ(a).

5. Let A be an Ω-algebra and T (Ω) be the one-element algebra {ε} given by
Exercise 9 of Section 1. Prove that there is exactly one homomorphism
A→ T (Ω).

6. (a) Show that the product A× B seen in Section 1 is isomorphic to that
in Section 2.

(b) Show that AS ∼=
∏
s∈S A.

7. (a) If A ∼= B and C ∼= D, prove that A× C ∼= B ×D.

Then prove the following statements for Ω-algebras A,B,C:

(b) (A×B)× C ∼= A× (B × C)

(c) A×B ∼= B ×A
(d) T (Ω)×A ∼= A

8. (a) If f : A → B is a homomorphism and A1 is a subalgebra of A, prove
that f(A1) = {f(a) | a ∈ A1} is a subalgebra of B.

(b) Now suppose B1 is a subalgebra of B. Show that f−1(B1) = {a ∈ A |
f(a) ∈ B1} is a subalgebra of A.

9. (a) If f : A→ B and g : A→ B are homomorphisms, show that {a ∈ A |
f(a) = g(a)} is a subalgebra of A.

(b) Let X ⊆ A such that 〈X〉 = A. If f : A→ B and g : A→ B are homo-
morphisms with f |X = g|X, prove that f = g. Thus, a homomorphism
of A is completely determined by its action on generators of A.

10. Let A1, A2 and A be Ω-algebras and f1 : A1 → A and f2 : A2 → A
homomorphisms. Define C = {(a1, a2) ∈ A1 ×A2 | f1(a1) = f2(a2)}.
(a) Show that C is a subalgebra of A1 ×A2.
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(b) Define g1 : C → A1 by g1(a1, a2) = a1 and g2 : C → A2 by g2(a1, a2) =
a2. Show that g1 and g2 are homomorphisms, and that f1g1 = f2g2; that
is, the diagram

A1

C

g1
>

A

f1

>

A2

f2

>

g2 >

is commutative.

(c) Suppose D is an Ω-algebra and h1 : D → A1 and h2 : D → A2 are
homomorphisms such that

A1

D

h1
>

A

f1

>

A2

f2

>

h2 >

is commutative. Define k : D → A1 × A2 by k(d) = (h1(d), h2(d)). Show
that k(D) ⊆ C. Conclude that k can be surjectified to a homomorphism
D → C.

(d) Show that k is the unique homomorphism D → C such that the
triangles in

A1

D
k
>

h1
>

C

g1

>

A2

g2

>h2 >

are commutative.

The algebra C and the maps g1 and g2 from C are said to be a pullback
of the maps f1 and f2.
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1.4 - Congruence Relations

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Congruence relations are the seed to quotient algebras. To understand them,
we first need a notion of relations [as mathematical objects]. If A is a set, then
a relation on A hereby refers to a subset of A×A. If Φ ⊆ A×A and a, b ∈ A,
one can write aΦb if (a, b) ∈ Φ.

Recall that a relation Φ is an equivalence relation if for all a, b, c ∈ A:
aΦa [reflexivity];
aΦb =⇒ bΦa [symmetry];
aΦb, bΦc =⇒ aΦc [transitivity].
In this case, if a is the equivalence class {b ∈ A | bΦa}, then a = b if aΦb,

otherwise a∩ b = ∅. A congruence relation is even stronger than an equivalence
relation. If you apply an n-ary operator to equivalence classes, you should get
one equivalence class without any dependence of the operand representatives.
This motivates the following definition.

DEFINITION
A congruence relation [or congruence] on an Ω-algebra A is an equiva-

lence relation on A which is a subalgebra of A×A.

This definition may appear to be confusing. How does one view a relation
Φ as a subalgebra of A × A? Well, recall that it’s constructed as a sub-
set of A × A. So the definition says that whenever n ≥ 0, ω ∈ Ω(n) and
(a1, b1), (a2, b2), . . . (an, bn) ∈ A × A, we have (ω(a1, b1)(a2, b2) . . . (an, bn)) =
((ωa1a2 . . . an), (ωb1b2 . . . bn)) ∈ A×A. Stated otherwise, if aiΦbi for 1 ≤ i ≤ n,
then (ωa1a2 . . . an)Φ(ωb1b2 . . . bn).

Notice that if n = 0, the previous statement says (ωA)Φ(ωA). However,
that is an immediate consequence of reflexivity, so nullary operators need not
be regarded in a congruence relation. Stated otherwise,

An equivalence relation Φ on an Ω-algebra A is a congruence relation
if and only if whenever n ≥ 1, ω ∈ Ω(n), a1, a2, . . . an, b1, b2, . . . bn ∈ A and
aiΦbi for each i = 1, 2, . . . , n, then (ωa1a2 . . . an)Φ(ωb1b2 . . . bn).

The equivalence classes of a congruence relation are usually called congruence
classes.

EXAMPLES
1. The identity relation/diagonal 1A = {(a, a) | a ∈ A} is a congruence

relation on A because if ai = bi for all i, clearly (ωa1a2 . . . an) = (ωb1b2 . . . bn).
The full relation A×A is also a congruence relation.

2. If Φ is a congruence relation on A and B is a subalgebra of A, then
Φ ∩ (B ×B) is a congruence relation on B, called the restriction of Φ to B.
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3. If A and B are Ω-algebras, define a relation A∗ by (a1, b1)A∗(a2, b2) if
b1 = b2. A∗ is seen to be a congruence relation.

4. In general, let Φ be a congruence relation on B. Then define Φ∗ by
(a1, b1)Φ∗(a2, b2) if b1Φb2. Φ∗ is a congruence relation; the last example was a
special case with Φ = 1B .

If you didn’t learn about congruence relations in earlier abstract algebra lessons,
that’s probably because they’re usually associated with special kinds of subsets.
In universal algebra, however, they are relations at best, so I would recommend
you read this section to get the hang of them.

EXAMPLES
1. If Φ is a congruence relation on a group G, then the congruence class

N = {a ∈ G | aΦe} is a normal subgroup of G. Conversely, if N is a normal
subgroup, the relation {(a, b) | ab−1 ∈ N} is a congruence relation. This is seen
to be a one-to-one correspondence. So normal subgroups are used for congruence
in a group, rather than congruence relations as previously defined.

2. Let R be a fixed ring and M a left R-module. If Φ is a congruence relation
on M [ex. aΦb implies kaΦkb for all k ∈ R], then N = {a ∈ M | aΦ0} is a
submodule; and if N is a submodule then {(a, b) | a − b ∈ N} is a congruence
relation on M . Again, this is a one-to-one correspondence. So congruence
relations in a module are identified with submodules.

3. If Φ is a congruence relation on a ring R, the set I = {a ∈ R | aΦ0} is
an ideal, and every ideal I results in a congruence relation {(a, b) | a − b ∈ I}.
This is a one-to-one correspondence. Congruence relations in a ring are viewed
as ideals.

4. Let Φ be a congruence relation on a Boolean algebra B. Then F = {a ∈
B | aΦ1} is a filter in B. Conversely, whenever F is a filter in B, the relation
{(a, b) | a∨b′ ∈ F and a′∨b ∈ F} is the corresponding congruence. The Boolean
algebra’s congruence relation is thus a filter.

We recall that the subalgebras of A form a complete lattice under inclusion.
The same is true for congruence relations. As subsets of A × A, one would al-
ready know the notion of inclusion and intersection of relations: If Θ and Φ are
congruence relations, then Θ ⊆ Φ if and only if whenever aΘb for a, b ∈ A, then
aΦb. If {Φα} are congruence relations, then ∩Φα is the relation a ∼ b that aΦαb
for every α. According to the following theorem, ∩Φα is indeed a congruence.

THEOREM 1.7 If A is an Ω-algebra, then Con A — the set of congruence
relations on A — is a complete lattice under inclusion.

Proof of Theorem 1.7. Con A is clearly a poset under inclusion, with largest
element A × A and smallest element 1A. Now suppose {Φα} are congruence
relations on A; we claim that ∩Φα is a congruence relation. In that case, we
can apply Lemma 1.1 and conclude that Con A is a complete lattice.
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Since every Φα is a subalgebra of A×A, so is the intersection ∩Φα by Exer-
cise 2 of Section 2. We need only show that ∩Φα is an equivalence relation on
A. It is clear that for a ∈ A, (a, a) is in every Φα, hence in the intersection, so
that ∩Φα is reflexive. If (a, b) ∈ ∩Φα, then (a, b) ∈ Φα for every α. Since each
Φα is symmetric it contains (b, a), which is thus in ∩Φα. This proves symme-
try. Finally, if (a, b), (b, c) ∈ ∩Φα, then each Φα contains (a, b) and (b, c), hence
(a, c) by transitivity. Therefore, (a, c) ∈ ∩Φα, and ∩Φα is transitive, hence an
equivalence relation. �

And now, very pertinent in many studies is a congruence relation generated by
a set. As in the case of subalgebras, if X ⊆ A×A, [X] is the intersection of all
congruence relations on A containing X. [At least one exists, namely A×A.]

THEOREM 1.8 Let A be an Ω-algebra and X be a subset of a A×A. Then:
(1) [X] is a congruence relation on A containing X.
(2) Whenever Φ is a congruence relation on A containing X, [X] ⊆ Φ.
(3) [X] is the only congruence relation on A with properties (1) and (2).

Proof of Theorem 1.8. Copy the proof of Theorem 1.3, translating 〈X〉 to [X],
subalgebras of A to congruence relations on A, Exercise 2 of Section 2 to The-
orem 1.7, and B to Φ. �

If Θ and Φ are congruence relations on A, then Θ∪Φ need not be a congruence
relation. However, by Theorem 1.7, Θ and Φ do have a least upper bound Θ∨Φ.

Also, the correspondence between normal subgroups of a group and congru-
ence relations actually preserves the lattice structure; if N and M are normal
subgroups, N ⊆M if and only if congruence mod N is contained in congruence
mod M . Same for ideals and rings, etc.

EXERCISES
From this point on, words like “show that” and “prove that” are omitted for

simplification. If an exercise is in the form of a statement, you are supposed to
prove it.

1. (a) If f : A → B is a homomorphism of Ω-algebras and Θ = {(a, b) ∈
A×A | f(a) = f(b)}, then Θ is a congruence relation on A.

(b) If Φ is a congruence relation on B and f : A→ B is a homomorphism,
Θ = {(a, b) ∈ A×A | f(a)Φf(b)} is a congruence relation on A.

2. If Φ is a congruence relation on A and B is a subalgebra of A, then B
is said to be Φ-invariant provided that whenever a ∈ B and aΦb, then
b ∈ B.

(a) If {Aα} is a family of Φ-invariant subalgebras of A, the intersection
∩Aα is Φ-invariant.

(b) A is Φ-invariant for every congruence relation Φ on A.

(c) Every subalgebra of A is 1A-invariant.
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3. (a) If R is a ring, I an ideal in R and S a subring of R, let Φ be the
congruence relation associated with I. Then S is Φ-invariant if and only
if I ⊆ S.

(b) State an analogous result for groups.

4. If Φ is a congruence relation on A and B is a subalgebra of A, define
BΦ = {a ∈ A | aΦb for some b ∈ B}.
(a) BΦ is the smallest Φ-invariant subalgebra of A containing B.

(b) B is Φ-invariant if and only if BΦ = B.

(c) If Φ1 and Φ2 are congruences on A, then B(Φ1 ∩ Φ2) ⊆ BΦ1 ∩BΦ2.

(d) Show by example that B(Φ1 ∩ Φ2) = BΦ1 ∩BΦ2 may not hold.

(e) If B1 and B2 are subalgebras of A, then (B1 ∩B2)Φ ⊆ B1Φ ∩B2Φ.

(f) Show by example that (B1 ∩B2)Φ = B1Φ ∩B2Φ may not hold.

5. (a) If Φ is a congruence relation on A and {ε} a one-element subalgebra
of A, then ε = {a ∈ A | aΦε} is a subalgebra of A. Conclude that if A has
a one-element subalgebra, each congruence relation has a subalgebra of A
as a congruence class.

(b) Show by example that Φ need not be determined by ε.

6. (a) If G is a group, N a normal subgroup and K any subgroup, let Φ
be the congruence relation associated with N . Then KΦ is the subgroup
NK = {nk | n ∈ N, k ∈ K}.
(b) N∩K is a normal subgroup of K, which corresponds to the congruence
relation Φ ∩ (K ×K) on K.

(c) State an analogous result for rings.

7. If Θ and Φ are congruence relations on A, then [Θ ∪Φ] is the least upper
bound of Θ and Φ in the lattice of congruence relations.

8. An ideal in a Lie algebra L over a field F is a subalgebra I such that
whenever a ∈ I and l ∈ L, then [a : l] ∈ I and [l : a] ∈ I. [Note that the
statement [l : a] ∈ I is superfluous because [l : a] = −[a : l].] Show that
there is a bijection between the ideals in L and the congruence relations
on L, preserving the lattice structure.
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1.5 - Quotient Algebras and Homomorphisms
Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Let Φ be a congruence relation on an Ω-algebra A. Our goal is to show that the
set A/Φ of congruence classes is actually an Ω-algebra.

If a ∈ A, the congruence class with a is denoted aΦ, or a if Φ is clearly
under discussion. Thus a = b if and only if aΦb. For each ω ∈ Ω(0), we take
(ωA/Φ) = (ωA). Now suppose n ≥ 1 and ω ∈ Ω(n). Then define ω as follows:

(ωa1a2 . . . an) = (ωa1a2 . . . an)

for a1, a2, . . . an ∈ A. We need to know that ω is well-defined on A/Φ [its result
does not depend on the representatives used for the operands in A/Φ]. However,
this follows from the fact that Φ is a congruence relation, thus a subalgebra of
A×A. So if bi = ai for i = 1, 2, . . . n, then (ωa1a2 . . . an) = (ωb1b2 . . . bn).

Section 9 shows that all identities that hold for A also hold for A/Φ. Right
now, we think of A as a set equipped with operations without any identities
required. It is called the quotient algebra of A given by Φ.

NOTE You should take the time to verify that if Ω-algebras are groups, and N
is the normal subgroup in G corresponding to the congruence relation Φ, then
the quotient group G/N is the same as G/Φ just defined. Same for R-modules
and submodules; rings and ideals; and Boolean algebras and filters.

The definition of A/Φ may appear to resemble a homomorphism. Well, it does.
If Φ is a congruence relation on A, define π : A → A/Φ by π(a) = a for all
a ∈ A. Then π is a homomorphism:

π(ωa1a2 . . . an) = (ωa1a2 . . . an) = (ωa1a2 . . . an) = (ωπ(a1)π(a2) . . . π(an))

and is clearly surjective, because every element of A/Φ can be represented by
an element of A. π is called the canonical epimorphism [natural homo-
morphism] of A into A/Φ. Notice that aΦb in A if and only if a = b in A/Φ,
that is, π(a) = π(b). This leads to the following definition.

DEFINITION If f : A→ B is a homomorphism of Ω-algebras, the kernel of
f is defined to be the relation {(a1, a2) ∈ A×A | f(a1) = f(a2)}.

It is clear that f is injective if and only if its kernel is 1A. The kernel informally
measures how far f is from being injective.

Take another look at the canonical epimorphism π : A→ A/Φ. What is its
kernel? Well, (a, b) is in the kernel of π if and only if π(a) = π(b), which is true
if and only if aΦb, as we saw before the definition. So the kernel of π is Φ. This
means that every congruence relation on A is the kernel of some homomorphism
from A. Conversely, a kernel is always a congruence relation:
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THEOREM 1.9 If f : A → B is a homomorphism of Ω-algebras, then the
kernel Θ of f is a congruence relation on A.

Notice that if f : G→ H is a homomorphism of groups, its kernel [as a relation]
corresponds to the normal subgroup N = {a ∈ G | f(a) = e}, which is also
called its kernel.

Proof of Theorem 1.9. Θ is obviously an equivalence relation on A. Now suppose
ω ∈ Ω(n) and a1, a2, . . . an, b1, b2, . . . bn ∈ A with aiΘbi for 1 ≤ i ≤ n. Then
f(ai) = f(bi) for all i, and hence,

f(ωa1a2 . . . an) = (ωf(a1)f(a2) . . . f(an)) = (ωf(b1)f(b2) . . . f(bn)) = f(ωb1b2 . . . bn)

therefore, (ωa1a2 . . . an)Θ(ωb1b2 . . . bn), and Θ is a congruence relation. �

An Ω-algebra B is said to be a homomorphic image of an Ω-algebra A if there
exists a surjective homomorphism A → B. The canonical epimorphism shows
that A/Φ is a homomorphic image of A, for every congruence relation Φ. To
see that every homomorphic image actually looks like one of those, we develop
the dual of Theorem 1.5, where injectivity and surjectivity are exchanged.

THEOREM 1.10 (INJECTIFICATION) Let f : A→ B be a homomorphism
of Ω-algebras and Φ a congruence relation on A. If π : A→ A/Φ is the canonical
epimorphism, then:

(1) There exists a homomorphism f : A/Φ→ B such that f = fπ [in other
words, that f(a) = f(a) for all a ∈ A] if and only if Φ ⊆ ker f .

If the equivalent conditions in (1) hold, then
(2) f is unique;
(3) f is injective if and only if Φ = ker f ;
(4) f is surjective if and only if f is surjective.

Here’s the idea: ker f tells how much information is lost through f . By changing
the domain to A/Φ, some of the information ends up never existing in the first
place. (4) shows that surjectivity is not affected, and (3) shows that injectivity
comes from dividing the domain by the whole kernel.

Proof of Theorem 1.10. (1) Suppose Φ ⊆ ker f . Now define f : A/Φ → B by
f(a) = f(a). This map is well-defined because Φ ⊆ ker f , and hence, if a = b in
A/Φ, then f(a) = f(b). f is a homomorphism because

f(ωa1a2 . . . an) = f(ωa1a2 . . . an) = f(ωa1a2 . . . an)

= (ωf(a1)f(a2) . . . f(an)) = (ωf(a1)f(a2) . . . f(an))

for ω ∈ Ω(n) and a1, a2, . . . an ∈ A. Also, f(a) = f(a) = fπ(a), so that
f = fπ. Conversely, if f : A/Φ → B is a homomorphism such that f = fπ,
then whenever aΦb, π(a) = π(b), so that f(a) = fπ(a) = fπ(b) = f(b) and
(a, b) ∈ ker f . Thus Φ ⊆ ker f .
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(2) Suppose f
′

: A/Φ → B is also a homomorphism satisfying f = f
′
π.

Then fπ = f
′
π. Since π is surjective, f = f

′
follows, and f is unique.

(3) Suppose f is injective. We already know that Φ ⊆ ker f , so let (a, b) ∈
ker f , and we show that aΦb. Well, f(a) = f(b) by definition. Hence, fπ(a) =
fπ(b), so that π(a) = π(b) since f is injective. This implies aΦb. Hence ker f ⊆
Φ and Φ = ker f . Conversely, if Φ = ker f and f(a) = f(b), then f(a) = fπ(a) =
fπ(b) = f(b). Thus (a, b) ∈ ker f , which is Φ, by hypothesis, hence aΦb and
a = b. Therefore f is injective.

(4) For each b ∈ B, there exists a ∈ A such that f(a) = b if and only if
there exists a ∈ A such that f(a) = b, that is, if there exists a ∈ A/Φ such that
f(a) = b. So the images of f and f are the same subalgebra of B, and of course,
one is surjective if and only if the other is. �

If f is surjective and Φ = ker f , then the map f given by Theorem 1.10 is in-
jective and surjective, so that it is an isomorphism. Hence:

COROLLARY 1.11 (FIRST ISOMORPHISM THEOREM) If f : A → B is
a surjective homomorphism with kernel Θ, then A/Θ ∼= B.

Thus every homomorphic image of A is actually isomorphic to A/Θ, for some
congruence relation Θ.

Note that the identity map 1A : A → A is surjective with kernel 1A. [It
should not be ambiguous when 1A refers to the identity map, and when it refers
to the identity relation.] By the First Isomorphism Theorem, A/1A ∼= A follows.

What is A/(A×A), on the other hand? If A = ∅, this quotient is empty, of
course. Now suppose A 6= ∅. Since A×A is the relation that holds for all pairs
of elements of A, there is a single congruence class in A/(A×A). It follows that
A/(A×A) ∼= T (Ω).

Subalgebras and Quotient Algebras of Quotient Algebras

What can be said about subalgebras of A/Φ? Let C be a subalgebra of A/Φ
and B = {a ∈ A | a ∈ C} be the union of the congruence classes in C. It is clear
that B is a Φ-invariant subalgebra of A. Now define f : B → C by f(a) = a.
For each a ∈ C, a ∈ B by definition and a = f(a) so f is surjective. Clearly f
is a homomorphism.

What’s the kernel of f? Well, f(a1) = f(a2) if and only if a1 = a2, which
holds if and only if a1Φa2 in A [because C consists of congruence classes of Φ].
So f(a1) = f(a2) for a1, a2 ∈ B if and only if a1Φa2 in A. Furthermore, the
kernel of f is Φ ∩ (B ×B) [or Φ ∩B2], the restriction of Φ to B. By Corollary
1.11, B/(Φ∩B2) ∼= C. In fact, B/(Φ∩B2) is C, because B is Φ-invariant, and
hence, B/(Φ ∩B2) consists of the congruence classes of Φ contained in B.

So, the subalgebras of A/Φ are of the form B/(Φ∩B2) with B a Φ-invariant
subalgebra of A. What can we say about B/(Φ ∩ B2) if B is any subalgebra
of A? The idea is to “complete” the half-full congruence classes. Recall that
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BΦ = {a ∈ A | aΦb for some b ∈ B} is the union of the congruence classes of Φ
that meet B. Exercise 4(a) of the last section shows that BΦ is a Φ-invariant
subalgebra of A. Hence, BΦ/(Φ ∩ (BΦ)2) is a subalgebra of A/Φ. Since all we
did to B/(Φ ∩B2) was add to the congruence classes, we expect the Ω-algebra
structure to remain unchanged. This is indeed the case:

THEOREM 1.12 (SECOND ISOMORPHISM THEOREM) Let B be a subal-
gebra of A and Φ a congruence relation on A. Then B/(Φ ∩B2) is isomorphic
to the subalgebra BΦ/(Φ ∩ (BΦ)2) of A/Φ.

Since BΦ is Φ-invariant, one could abbreviate BΦ/(Φ ∩ (BΦ)2) as BΦ/Φ.

Proof of Theorem 1.12. Define f : B → BΦ/(Φ ∩ (BΦ)2) by f(b) = bΦ. Then
clearly f is a homomorphism. Every element of BΦ/(Φ ∩ (BΦ)2) is of the
form cΦ with c ∈ BΦ. By definition, there exists b ∈ B with bΦc, and hence
cΦ = bΦ = f(b). Therefore, f is surjective.

We claim that ker f = Φ ∩ B2, so that the statement B/(Φ ∩ B2) ∼=
BΦ/(Φ ∩ (BΦ)2) will follow from Corollary 1.11. If f(a) = f(b), then aΦ = bΦ,
and hence, aΦb. However, a and b must be in B for f(a) and f(b) to exist.
Therefore, (a, b) ∈ Φ ∩ B2. Conversely, if (a, b) ∈ Φ ∩ B2, then (a, b) ∈ Φ, so
that aΦ = bΦ and f(a) = f(b). Therefore, ker f = Φ ∩B2. �

Now to ask about quotient algebras of A/Φ. To do this, suppose Φ and Θ are
congruence relations on A with Φ ⊆ Θ. Then define

Θ/Φ = {(aΦ, bΦ) ∈ A/Φ×A/Φ | aΘb}

Since Φ ⊆ Θ, it turns out that whether an element of A/Φ × A/Φ is in Θ/Φ
doesn’t depend on the choice of congruence class representatives. It is also
clear that Θ/Φ is a congruence relation on A/Φ. Now consider the map from
congruence relations on A containing Φ to congruence relations on A/Φ, sending
each Θ containing Φ to the relation Θ/Φ just defined. Exercise 6 shows that
this is a bijective map.

Hence, every congruence relation on A/Φ is of the form Θ/Φ. What is the
structure of the quotient (A/Φ)/(Θ/Φ)? Well, we have basically glued Φ’s con-
gruence classes together to result in Θ’s, so we should end up with A/Θ. We
certainly do, which yields the third isomorphism theorem.

THEOREM 1.13 (THIRD ISOMORPHISM THEOREM) Let Φ and Θ be
congruence relations on A with Φ ⊆ Θ. Then (A/Φ)/(Θ/Φ) ∼= A/Θ.

Proof of Theorem 1.13. Let π : A→ A/Θ be the canonical epimorphism. Since
Θ is the kernel of π and Φ ⊆ Θ by hypothesis, π can be injectified to a surjec-
tive homomorphism f : A/Φ → A/Θ by Theorem 1.10, sending aΦ → aΘ. If
(aΦ, bΦ) ∈ ker f , then aΘ = bΘ, hence aΘb which means (aΦ, bΦ) ∈ Θ/Φ. The
converse can be traced easily. Hence, Θ/Φ is the kernel of f , from which it
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follows that (A/Φ)/(Θ/Φ) ∼= A/Θ by Corollary 1.11. �

EXERCISES
In general, all maps in the following exercises are homomorphisms.

1. (a) A is a homomorphic image of A.

(b) If C is a homomorphic image of B and B is a homomorphic image of
A, then C is a homomorphic image of A.

2. Consider p : A×B → A given by p(a, b) = a. What is the kernel of p?

3. Suppose Θ is a congruence relation on A and Φ a congruence relation on
B. Describe the kernel of the map f : A × B → A/Θ × B/Φ defined by
f(a, b) = (aΘ, bΦ).

4. If Φ and Θ are congruence relations on A and f : A → A/Φ × A/Θ is
defined by f(a) = (aΘ, aΦ), what is the kernel of f?

5. (a) If f : A→ B has kernel Θ, then for every subalgebra C of B, f−1(C)
is Θ-invariant. [A subalgebra of A is said to be saturated if it’s (ker f)-
invariant.]

(b) If f : A → B is surjective, there exists a bijection between the subal-
gebras of B and the saturated subalgebras of A.

(c) Let π : A → A/Φ be the canonical epimorphism and B a subalgebra
of A. Then BΦ = π−1(π(B)).

6. (a) Every congruence relation on A/Φ is of the form Θ/Φ, with Θ a con-
gruence relation on A containing Φ. For example, 1A/Φ = Φ/Φ.

(b) If Θ1/Φ = Θ2/Φ then Θ1 = Θ2.

(c) There exists a bijection between the congruence relations on A/Φ and
the congruence relations on A containing Φ.

7. If f : A → B is a homomorphism with kernel Θ and Φ is a congruence
relation on A such that Φ ⊆ Θ, the homomorphism f : A/Φ→ B resulting
from injectification [Theorem 1.10] has kernel Θ/Φ.

8. If Θ is a congruence relation on B, then f−1(Θ) = {(a1, a2) ∈ A × A |
f(a1)Θf(a2)} is a congruence relation on A containing the kernel of f .

9. An Ω-algebra A is said to be simple if |A| ≥ 2 and the only congruence
relations on A are 1A and A× A. If A is simple, |B| ≥ 2 and f : A → B
is a surjective homomorphism, then f is an isomorphism.

10. Let B be a subalgebra of A and Φ a congruence relation on A, such that
BΦ = A and Φ∩(B×B) = 1B . [B and Φ are said to be complementary
in this case.] Assume ι : B ↪→ A is the canonical monomorphism, and
π : A→ A/Φ is the canonical epimorphism.
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(a) Every congruence class of Φ contains exactly one element of B. Stated
otherwise, the map f = πι : B → A/Φ is bijective, so it’s an isomor-
phism. Conclude that any two subalgebras of A complementary to Φ are
isomorphic.

(b) g = ιf−1 : A/Φ → A is a homomorphism such that im g = B and
πg = 1A/Φ. [Such a homomorphism g is said to be a section.]

(c) If g : A/Φ→ A is any homomorphism such that πg = 1A/Φ, then im g
and Φ are complementary.

(d) h = f−1π : A → B is a homomorphism such that kerh = Φ and
hι = 1B . [Such a homomorphism h is said to be a retraction.]

(e) If h : A → B is any homomorphism such that hι = 1B , then B and
kerh are complementary.

(f) Now suppose e = ιf−1π : A → A; show that e2 = e, ker e = Φ and
im e = B. e is said to be the projection through the congruence
relation Φ onto the subalgebra B.

(g) If e : A → A is any homomorphism such that e2 = e, im e and ker e
are complementary, and e is the projection through ker e onto im e.

(h) If G is a group, N a normal subgroup of G corresponding to a congru-
ence relation Φ, and K any subgroup, then K and Φ are complementary
if and only if NK = G and N ∩K = 〈e〉 — so that G = N oK. [Hint :
Use Exercise 6 of Section 4 to translate the definition of complements.]
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1.6 - Subdirect Products

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Only section 10 will use this material, and the theorems used will be
stated in the section.

The subdirect product cuts down on congruence relations in the strongest
way. To illustrate this, let G be a group and N1, N2, N3 be normal subgroups of
G such that N1∩N2∩N3 = 〈e〉. That last statement shows that no information
is lost in all of G/N1, G/N2 and G/N3. But does that mean we can get G back
from them somehow?

The answer is yes, but it’s not all that algorithmic. Define f : G→ G/N1 ×
G/N2 ×G/N3 by f(a) = (N1a,N2a,N3a). f is clearly a group homomorphism.
Now if a ∈ ker f , then f(a) = (N1e,N2e,N3e), whence a ∈ N1, a ∈ N2 and
a ∈ N3. Therefore a ∈ N1 ∩ N2 ∩ N3 = 〈e〉, and a = e, from which it follows
that ker f = 〈e〉 and f is injective. Hence, G is isomorphic to a subgroup of
G/N1 ×G/N2 ×G/N3 [namely, the image of f ]. If we can find all subgroups of
the direct product, we can get G.

Now we generalize this to universal algebra, with an arbitrary — possibly
infinite — batch of congruence relations. Let A be an Ω-algebra and {Φα} a
batch of congruence relations on A such that ∩Φα = 1A. Then there is no
information in A that gets lost in all of the A/Φα.

Define f : A→ ΠA/Φα by f(a)α = aΦα . Then for ω ∈ Ω(n), a1, a2, . . . an ∈
A and component index α,

f(ωa1a2 . . . an)α = (ωa1a2 . . . an)Φα
= (ωa1

Φα
a2

Φα
. . . anΦα

)

= (ωf(a1)αf(a2)α . . . f(an)α) = (ωf(a1)f(a2) . . . f(an))α

hence f is a homomorphism. Now suppose f(a) = f(b). Then for every α,
f(a)α = f(b)α, hence aΦα

= bΦα
and aΦαb. This means (a, b) is in every Φα,

hence (a, b) ∈ ∩Φα = 1A and a = b. Therefore, f is injective. Note that if
pα : ΠA/Φα → A/Φα is the projection homomorphism a→ aα, then pαf is the
canonical epimorphism A→ A/Φα, and is hence surjective. This motivates the
following definition.

DEFINITION
If {Aα} is a batch of Ω-algebras, a subdirect product of the Aα is an Ω-

algebra A along with an injective homomorphism f : A → ΠAα such that for
each projection pα : ΠAα → Aα, the map pαf is surjective.

You can think of a subdirect product of the Aα’s as a subalgebra of the product,
such that for each component index α, every element of Aα lies in index α of
some element.

As we have seen, if ∩Φα = 1A, A is a subdirect product of the A/Φα’s. If
we aren’t given ∩Φα = 1A, then what? This is answered in Exercise 1.
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Recall that whenever p is a prime integer and p = nm with n and m integers,
then p = ±n or p = ±m. Subdirect irreducibility is defined similarly:

DEFINITION
An Ω-algebra A is said to be subdirectly irreducible provided that |A| ≥ 2

and whenever A is a subdirect product of {Aα} given by f : A → ΠAα, there
exists a component index α such that pαf : A→ Aα is an isomorphism.

Stated otherwise, for each a ∈ Aα, there is exactly one t ∈ f(A) with tα = a.
Hence, A is simply isomorphic to the operand Aα.

Is there an easier way to think about this? When A is a subdirect product
of {Aα}, each Aα is a homomorphic image of A, with the kernels intersecting to
1A. This fails when you cannot intersect congruence relations of A and result
in 1A, unless one of the operands itself is 1A.

THEOREM 1.15 An Ω-algebra A with |A| ≥ 2 is subdirectly irreducible if and
only if the intersection of all nonidentity congruence relations on A is not 1A.

Proof of Theorem 1.15. If A is subdirectly irreducible, let {Φα} be the set of
nonidentity congruence relations on A. We want to show that ∩Φα 6= 1A. If
∩Φα = 1A, define f : A → ΠA/Φα by f(a)α = aΦα

as before. We have al-
ready seen this to be a subdirect product. By subdirect irreducibility, pαf :
A → A/Φα is an isomorphism for some α. This means that ker(pαf) = 1A.
But ker(pαf) = Φα, since pαf is the canonical epimorphism. Hence Φα = 1A,
contrary to {Φα} being the set of nonidentity congruence relations. Therefore,
∩Φα 6= 1A. Conversely, suppose the intersection of all nonidentity relations on
A is not 1A, and f : A → ΠAα gives a subdirect product. It is clear that the
kernel of f , which is 1A, is the intersection of the kernels of pαf for every α.
Since nonidentity congruence relations never intersect to 1A, ker(pαf) = 1A for
some α. Hence pαf : A→ Aα is injective, but it is also surjective by definition
of a subdirect product, so that it is an isomorphism. Hence, A is subdirectly
irreducible. �

Exercise 4 shows that an Ω-algebra with at least two elements is a subdirect
product of subdirectly irreducible algebras.

EXERCISES

1. Let {Φα} be any batch of congruence relations on A, and let Φ = ∩Φα.
A/Φ is a subdirect product of the A/Φα’s. [Hint : Define f : A→ ΠA/Φα
by f(a)α = aΦα as before. Find the kernel of f and injectify.]

2. (a) Use Theorem 1.15 to show that if n ≥ 2, the cyclic group Zn is subdi-
rectly irreducible if and only if n = pk with p prime.

(b) The ring Zn is also subdirectly irreducible if and only if n = pk with
p prime.
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3. If Φ1 ⊆ Φ2 ⊆ Φ3 ⊆ . . . is an ascending chain of congruence relations on
A, the union ∪Φi is a congruence relation. [Hint : Exercise 3 of Section 2.]

4. Assume that there is a maximal element in every nonempty poset in which
every chain subset has an upper bound. This is Zorn’s Lemma, but the
proof of this requires the Axiom of Choice.

(a) If a, b ∈ A with a 6= b, then there exists a congruence relation Φa,b on
A with (a, b) /∈ Φa,b such that whenever Φ is another congruence relation
with Φa,b $ Φ, (a, b) ∈ Φ.

(b) A/Φa,b is subdirectly irreducible. [Hint : Recall Exercise 6(c) of Section
5. What can be said about nonidentity congruence relations on A/Φa,b?
Use Theorem 1.15.]

(c) Every Ω-algebra A with |A| ≥ 2 is a subdirect product of subdirectly
irreducible algebras. [Hint : Consider A/Φa,b for all a 6= b in A.]
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1.7 - The Ultraproduct
Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if
desired.

Isn’t it saddening that some objects just fail the product? For example, if
F and G are fields, the ring product F × G is not a field: (1, 0) is a nonzero
element of F × G which doesn’t have an inverse. Thing is, the multiplicative
inverse isn’t really a unary operator, it’s a partial unary operator because 0−1

is not defined.
That’s just an ordinary product all right, it’s not meant to preserve much.

But what kind of a product would preserve all the logic there is? The ultrafilter
is what brightens our day at this very moment. Let’s just start out with the
filter, which was mentioned in Section 4.

A filter in a Boolean algebra B is a nonempty subset F satisfying the fol-
lowing two properties:

(1) Whenever x ∈ F and y ∈ F , x ∧ y ∈ F ;
(2) Whenever x ∈ F and x ≤ y then y ∈ F .
Theoretically, every filter F contains 1 ∈ B, but if 0 ∈ F then F = B. This

bears a similarity to ideals in a ring: every ideal contains 0, but if 1 is in there,
it’s the whole ring.

LEMMA 1.16 Let F be a proper filter in a Boolean algebra B. Then F is
maximal in the poset of proper filters in B if and only if whenever a ∈ B, either
a ∈ F or a′ ∈ F .

A proper filter satisfying either of the equivalent conditions in Lemma 1.16 is
called an ultrafilter. Note, by the way, that we can’t have both a and a′ in
F , because that would cause a ∧ a′ = 0 ∈ F and F = B. Hence an ultrafilter
contains a if and only if it doesn’t have a′.

Proof of Lemma 1.16. Suppose that F is maximal in the lattice of proper filters
and a ∈ B. We want to show that a ∈ F or a′ ∈ F . If a ∈ F , there is nothing
to prove. If a /∈ F , define

G = {x ∈ B | a ∧ u ≤ x for some u ∈ F}.

Then G is seen to be a filter in B: a ∧ u ≤ 1 for all u ∈ F , so 1 ∈ G and G is
nonempty. If x, y ∈ G, then there exist u, v ∈ F such that a∧u ≤ x and a∧v ≤ y.
Furthermore, u ∧ v ∈ F and a ∧ u ∧ v ≤ a ∧ u ≤ x and a ∧ u ∧ v ≤ a ∧ v ≤ y,
so that a ∧ u ∧ v ≤ x ∧ y. This means x ∧ y ∈ G. If x ∈ G and x ≤ y, then
a ∧ u ≤ x for some u ∈ F ; since a ∧ u ≤ x ≤ y, we have a ∧ u ≤ y and y ∈ G.
Therefore, G is a filter in B.

Furthermore, F ⊆ G, because if x ∈ F , then a∧x ≤ x so a∧u ≤ x for some
u ∈ F , thus x ∈ G. Also, a ∈ G because 1 ∈ F and a ∧ 1 ≤ a, but we are given
a /∈ F . Therefore, F 6= G. Since F is maximal we must have G = B.
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In particular, 0 ∈ G, so that a∧u ≤ 0 for some u ∈ F . Since 0 is smallest in
B, this basically says that a∧u = 0; hence, u∧a′ = (u∧a′)∨0 = (u∧a′)∨(u∧a) =
u ∧ (a′ ∨ a) = u ∧ 1 = u and u ≤ a′. Since u ∈ F , a′ ∈ F follows, completing
the proof of this implication.

Conversely, if a ∈ F or a′ ∈ F for all a ∈ B, suppose G is a filter in B with
F $ G. Then there exists a ∈ G such that a /∈ F . Since a /∈ F , a′ ∈ F by
hypothesis, hence a′ ∈ G. Therefore a ∧ a′ = 0 ∈ G and G = B. Thus, F is
maximal. �

For the remainder of this section, we deal with filters in the power set P(I) [the
subsets of I under inclusion] where I is a set of indices. If {Aα} is an indexed
set of Ω-algebras and F is a filter in P(I), let Φ be the relation on the product
ΠAα given by

aΦb if {α ∈ I | aα = bα} ∈ F.

Stated otherwise, a and b are congruent if F “has the set of their shared com-
ponents.” We show that Φ is truly a congruence relation on ΠAα. For a ∈ A,
{α ∈ I | aα = aα} = I ∈ F , hence, aΦa and Φ is reflexive. If aΦb, then
{α ∈ I | bα = aα} = {α ∈ I | aα = bα} ∈ F , so bΦa easily follows. Now suppose
aΦb and bΦc. Then A1 = {α ∈ I | aα = bα} and A2 = {α ∈ I | bα = cα} are in
F . To show that Φ is transitive, we need to show that A3 = {α ∈ I | aα = cα}
is in F , so that aΦc. Well, if α ∈ A1 ∩ A2, then aα = bα = cα and α ∈ A3.
Therefore, A1 ∩ A2 ⊆ A3. Yet, A1 ∩ A2 ∈ F and A3 ∈ F follow since F is a
filter. Consequently, Φ is an equivalence relation.

Now suppose ω ∈ Ω(n), a1, a2, . . . an, b1, b2, . . . bn ∈ ΠAα and aiΦbi for every
i. Then for each i, form the set Ai = {α ∈ I | aiα = biα}. We are given
that F contains all the Ai’s, and need to show that F contains A = {α ∈ I |
(ωa1a2 . . . an)α = (ωb1b2 . . . bn)α}. It is seen that A1 ∩ A2 ∩ · · · ∩ An ⊆ A, by
reasoning similar to the last paragraph, from which A ∈ F follows. Therefore,
Φ is indeed a congruence relation on ΠAα.

The special moment comes from the ultrafilter.

DEFINITION
Let {Aα} be an indexed collection of Ω-algebras with indices in I, and U an

ultrafilter in P(I). If Φ is defined as before [aΦb ⇐⇒ {α ∈ I | aα = bα} ∈ U ],
the quotient algebra (ΠAα)/Φ is called an ultraproduct of the Aα’s.

Fields fail the product, as previously seen. But they don’t fail the ultraproduct
— and almost nothing fails this. Let’s practice a proof.

THEOREM 1.17 An ultraproduct of fields is a field.

Proof of Theorem 1.17. Let {Aα} be an indexed collection of fields and (ΠAα)/Φ
the ultraproduct of the Aα’s involving ultrafilter U . It is clear that (ΠAα)/Φ is
a commutative ring, because commutative rings are closed under homomorphic
images and products.
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Now suppose a 6= 0 in (ΠAα)/Φ. We show that ab = 1 for some b. a 6= 0
implies that {α ∈ I | aα = 0} /∈ U , so its complement, N = {α ∈ I | aα 6= 0}
is in U . Consider b given by bα = a−1α if aα 6= 0, and 0 if aα = 0. Then
(ab)α = aαbα is 1 if aα 6= 0 and 0 if aα = 0. We claim that ab = ab = 1; to show
this, we see that {α ∈ I | (ab)α = 1} = {α ∈ I | aα 6= 0} = N ∈ U . Therefore,
ab is indeed 1, and (ΠAα)/Φ is a field. �

An ultraproduct of integral domains is an integral domain by the same token
[see Exercise 1]. This can be generalized.

What are examples of filters in P(I)? Well, a lot can be said about them.

EXAMPLES
1. A subset S of I is said to be cofinite in I if I − S is finite. It is easily

seen that the set F of cofinite subsets of I is a filter in P(I). It is not an
ultrafilter; for example, if I = Z, F contains neither the set of even integers,
nor its complement, the set of odd integers. F is called the Fréchet filter.

2. If σ ∈ I, then the set of subsets of I containing σ is an ultrafilter in P(I).
It is called the principal ultrafilter given by σ.

So yeah, a basic example of an ultrafilter is there. However, if U is the principal
ultrafilter given by σ ∈ I, the ultraproduct (ΠAα)/Φ is either empty or iso-
morphic to the operand Aσ [Exercise 4]. So of course it satisfies everything all
the operands satisfy. So principal ultrafilters don’t really produce much. Now,
does there exist a nonprincipal ultrafilter? Well, the Fréchet filter F allows us
to answer this.

THEOREM 1.18 An ultrafilter U in P(I) is nonprincipal if and only if F ⊆ U .

Proof of Theorem 1.18. Suppose U is the principal ultrafilter given by σ ∈ I.
Then the set I−{σ} is in F but not in U , hence F isn’t contained in U . Thus if
F ⊆ U then U is nonprincipal [we just proved the contrapositive]. Conversely,
suppose F isn’t contained in U ; we are to show that U is principal. In this case,
there exists A ∈ F such that A /∈ U . Since A /∈ U and U is an ultrafilter, the
complement I−A ∈ U . Since A ∈ F , I−A is finite by definition. Hence U con-
tains a finite set. Let n be the smallest positive integer such that U contains a
set with n elements. If n ≥ 2, say {α1, . . . αn} ∈ U , then {α1} /∈ U [otherwise U
would contain a set with fewer than n elements]. Therefore, I −{α1} ∈ U since
U is an ultrafilter. Intersecting this set with {α1, . . . αn} yields {α2, . . . αn},
which is hence a set in U with n− 1 elements. This contradicts the hypothesis
that n is the smallest integer such that U has a set with n elements. Therefore
n = 1, hence U contains {σ} for some σ ∈ I, and is easily seen to be the prin-
cipal ultrafilter given by σ. �

Therefore, the only question that remains is whether there’s an ultrafilter con-
taining F . If I is finite, F = P(I) so this is impossible [in other words, every
ultrafilter in P(I) is principal if I is finite!]. So suppose I is infinite. Then
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F doesn’t contain ∅ and is hence proper in P(I). If we assume the Axiom of
Choice, we can use Zorn’s Lemma [see Exercise 4 of Section 6] to show that an
ultrafilter containing F [hence nonprincipal] exists.

Let S be the set of proper filters in P(I) containing F . Assuming I is
infinite, F ∈ S so that S is nonempty. If F1 ⊆ F2 ⊆ F3 ⊆ . . . is a chain of filters
containing F , their union is also a filter containing F , and is proper if all the
Fi’s are [because a filter’s proper if and only if it doesn’t contain ∅]. Therefore,
every chain in S has an upper bound in S, so S has a maximal element by
Zorn’s Lemma. Lemma 1.16 shows that this is an ultrafilter in P(I). And it
clearly contains F .

The conclusion is, therefore, that P(I) has a nonprincipal ultrafilter if and
only if I is infinite.

EXERCISES

1. An ultraproduct of integral domains is an integral domain.

2. A monoid M is said to be cancellative provided that whenever a, b, c ∈M
and ab = ac or ba = ca, then b = c.

(a) If monoids M and N are cancellative, it so happens that M × N is
cancellative.

(b) Why doesn’t this imply that the product of integral domains is an
integral domain?

(c) A submonoid of a cancellative monoid M is cancellative.

(d) If M is cancellative and Φ is a congruence relation on M , show by
example that M/Φ need not be cancellative.

3. Let U be an ultrafilter in a Boolean algebra B, and a, b ∈ B. Then:

(a) a ∧ b ∈ U if and only if a ∈ U and b ∈ U ,

(b) a ∨ b ∈ U if and only if either a or b is in U .

4. Let σ ∈ I and U the principal ultrafilter in P(I) given by σ. Assume the
Aα’s are nonempty Ω-algebras.

(a) The kernel of the projection homomorphism pσ : ΠAα → Aσ is the
congruence relation Φ on ΠAα given by the U in the definition of the
ultraproduct.

(b) In conclusion, the ultraproduct (ΠAα)/Φ is isomorphic to Aσ.

5. An ultrafilter U in P(I) is principal if and only if the intersection of a
[possibly infinite] batch of sets in U is in U .
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1.8 - Ω-expressions and Free Ω-algebras

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Have you ever attempted to treat a job fairly, and not regard any rules? If so,
you’d realize how tough it is. Well, that’s one of the many important concepts
when it comes to universal algebra.

The free algebra will bring light to many of the future lessons. It takes
symbols and shells them with operators, disregarding what they could possibly
mean. Having done so, the symbols can map to any elements of a particular
Ω-algebra, and this gives rise to a homomorphism.

First, we define Ω-expressions on a set X. We also add a notion of length so
the expressions stay finite.

DEFINITION
If X is a set and Ω a universal algebra template, an Ω-expression in X is

recursively defined as follows.
1. If α is an element of X, then α is an Ω-expression in X with length 1.
2. If ω ∈ Ω(n) and α1, α2, . . . αn are Ω-expressions with lengths k1, k2, . . . kn

respectively, the expression (ωα1α2 . . . αn) is an Ω-expression whose length is
1 + k1 + k2 + · · ·+ kn.

In particular, if ω ∈ Ω(0), (ω) is an Ω-expression with length 1.

For example, if s and p are the sum and product in a ring, (px(syz)) is an Ω-
expression in {x, y, z} of length 5; whereas (s(pxy)(pxz)) — which is supposed
to be the same thing — is an Ω-expression of length 7.

We let F (Ω, X) be the set of Ω-expressions in X, and define its Ω-algebra
structure as follows: if ω ∈ Ω(n) and α1, α2, . . . αn ∈ F (Ω, X), then (ωα1α2 . . . αn)
is the element of F (Ω, X) given by part 2 of the definition. We then define
i : X → F (Ω, X) mapping each element of X to itself as an Ω-expression [part
1 of the definition]. F (Ω, X) is called the free Ω-algebra given by X.

The first important thing to realize is this: let A = 〈i(X)〉 ⊆ F (Ω, X). We
show that A = F (Ω, X). For each a ∈ F (Ω, X), we induct on the length of a
to show that a ∈ A. If a has length 1, it is either an element of X or a nullary
operator (ω), and in either case a ∈ A, because A is generated by the set i(X)
of elements of X seen as Ω-expressions, and it contains all nullary operators due
to being a subalgebra. Now suppose a has length n ≥ 2 and every expression
with length < n is in A. Then a = (ωa1a2 . . . ak) with ω ∈ Ω(k). Each ai has
length less than that of a, hence is in A by the inductive hypothesis. Since A is
a subalgebra, a ∈ A follows. Hence,

The free algebra F (Ω, X) is generated by the set i(X) of symbols in X.

Now suppose that A is an Ω-algebra and f : X → A a set map. Define
f1 : F (Ω, X) → A by assigning expressions in increasing order of length:
map x ∈ X to f(x), and (ωa1a2 . . . an) to (ωf1(a1)f1(a2) . . . f1(an)) [Once
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you get to (ωa1a2 . . . an), the f1(ai)’s already exist]. Then f1(ωa1a2 . . . an) =
(ωf1(a1)f1(a2) . . . f1(an)) is immediate from the definition, and f1i = f , be-
cause for each x ∈ X, f1i(x) is f1’s assignment of the expression x, which is
f(x).

It is also seen that f1 is uniquely determined by being a homomorphism
F (Ω, X) → A satisfying f1i = f , since i(X) generates F (Ω, X); hence if f ′1 :
F (Ω, X) → A is also a homomorphism satisfying f ′1i = f , then f1(x) = f ′1(x)
for all x ∈ i(X), hence f1 = f ′1 by Exercise 10(b) of Section 3. This illustrates
the following definition.

DEFINITION
Let C be a class of Ω-algebras. If X is a set, F ∈ C and i : X → F is a set

map, (F, i) is said to constitute a free algebra for C given by X provided that
whenever A ∈ C and f : X → A is a set map, there is a unique homomorphism
f1 : F → A such that f1i = f .

In particular, we have just seen that F (Ω, X) along with i is a free algebra for all
Ω-algebras given by X. It is in fact the only one, as the following theorem shows.

THEOREM 1.19 Let C be a class of Ω-algebras. Assume (F, i) constitutes a
free algebra given by a set X, and (F ′, i′) constitutes a free algebra given by a
set X ′. If |X| = |X ′| then F ∼= F ′.

Basically, if there’s a free algebra given by a set with a given cardinality, it is
unique up to isomorphism.

Proof of Theorem 1.19. Let σ : X → X ′ be the bijection which is hypothesized
to exist. Consider the map i′σ : X → F ′; since F is free given by X, there is
a homomorphism f : F → F ′ satisfying fi = i′σ. Now reverse the roles and
consider iσ−1 : X ′ → F : since F ′ is free given by X ′, there is a homomor-
phism f ′ : F ′ → F satisfying f ′i′ = iσ−1. The map f ′f : F → F satisfies
f ′fi = f ′i′σ = iσ−1σ = i1X = i. Since F is free, however, 1F is the unique
homomorphism F → F satisfying 1F i = i. Therefore, f ′f = 1F by uniqueness.
By the same argument, ff ′ = 1F ′ . Hence, f and f ′ are isomorphisms which are
inverses of each other, and F ∼= F ′. �

EXERCISES

1. Let C be a class of Ω-algebras, X a set, and F ∈ C with i : X → F a free
algebra for C given by X.

(a) If any subalgebra of an algebra in C is in C, then i(X) ⊆ F generates
F . [Hint : Let A = 〈i(X)〉 ⊆ F . The map X → A sending x → i(x)
extends to a homomorphism λ : F → A sending i(x) → i(x), since F is
free. But there’s also the canonical monomorphism ι : A ↪→ F . What can
you say about ιλ : F → F?]

(b) If C contains an algebra with at least two elements, then i is injective.
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2. Let I(Ω) = F (Ω, ∅).
(a) For each Ω-algebra A, there is exactly one homomorphism I(Ω)→ A.
[I(Ω) is called the initial Ω-algebra.]

(b) I(Ω) 6= ∅ if and only if Ω(0) 6= ∅.

3. The relation in F (Ω, X) of having the same length is a congruence relation.

4. If X ′ ⊆ X, then the subalgebra 〈i(X ′)〉 of F (Ω, X) is isomorphic to
F (Ω, X ′).

5. Describe the congruence relation on F (Ω, X) generated by {(i(x), i(y)) |
x, y ∈ X}. If X 6= ∅, what is the quotient algebra?

6. Let Φ be an equivalence relation on the set X and Φ1 the congruence rela-
tion on F (Ω, X) generated by {(i(x), i(y)) | xΦy in X}. Then F (Ω, X)/Φ1

∼=
F (Ω, X/Φ). [Hint : Consider the map X → F (Ω, X/Φ) sending each
x ∈ X to xΦ as an expression in the free algebra. Then extend its domain,
and injectify.]

7. In the class of pointed sets, the free algebra given by a set X is the set
X ] {x0} with base point x0. Conclude that every pointed set is actually
free.

8. In the class of all sets, what’s the free algebra given by a set X?

9. If X is a set and f : X → A a set map, then the resulting extension
F (Ω, X)→ A has image 〈f(X)〉 ⊆ A.

10. An element a ∈ A is said to be derivable from X ⊆ A provided that
there exists an Ω-expression in X which evaluates to a in A. Show that
〈X〉 is the set of elements of A derivable from X. [Hint : Exercise 9.]
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1.9 - Varieties and Coproducts

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

We finally have enough tools to deal with the presence of identities! Recall
that an identity indicates what expressions in variables must be equal for all
substitutions. Expressions are, though, elements of F (Ω, X), which leads to the
following definition.

DEFINITION
A pair (w1, w2) ∈ F (Ω, X)2 is called an identity for Ω. An Ω-algebra A is

said to satisfy the identity (w1, w2) if f(w1) = f(w2) for every homomorphism
f : F (Ω, X)→ A.

For the rest of this chapter, we letX0 be the countably infinite set {x0, x1, x2, . . . }.
For example, suppose Ω has a single binary operation [written multiplicatively]
and A is an Ω-algebra. Then ((x0x1)x2, x0(x1x2)) is an identity. What does
it mean to say that A satisfies that identity? Well, suppose that for every
homomorphism f : F (Ω, X0) → A, f((x0x1)x2) = f(x0(x1x2)). This says
(f(x0)f(x1))f(x2) = f(x0)(f(x1)f(x2)) for every homomorphism f : F (Ω, X0)→
A. Since there exists a homomorphism F (Ω, X0)→ A with any given action on
the x0, x1, . . . , it turns out that (ab)c = a(bc) for all a, b, c ∈ A. The argument
can be traced both ways. Hence, A satisfies ((x0x1)x2, x0(x1x2)) if and only if
(ab)c = a(bc) for all a, b, c ∈ A. It all makes sense! An identity (w1, w2) can
sometimes be referred to as w1 = w2.

This rigorates the definition of a monoid: suppose Ω(0) = {1} and Ω(2) =
{p}. Then an Ω-algebra A is a monoid if and only if it satisfies the identities:

1. ((p(px0x1)x2), (px0(px1x2))) [associativity];
2. ((p(1)x0), x0) [left identity];
3. ((px0(1)), x0) [right identity].
These can be rewritten as follows: (x0x1)x2 = x0(x1x2), 1x0 = x0, x01 = x0.
To generalize the idea, suppose S ⊆ F (Ω, X0)2 is a set of identities. Let

V(S) be the class of all Ω-algebras satisfying every identity in S. Then V(S)
is called a variety. For example, the groups form a variety, as do the rings
[Exercises 1 and 2]. V(S) has some interesting closure properties, as we now
see. If X ′ ⊆ X, recall how F (Ω, X ′) is a subalgebra of F (Ω, X) from Exercise 4
of Section 8.

LEMMA 1.20 (1) For each w ∈ F (Ω, X), there exists a finite subset X ′ of X
such that w ∈ F (Ω, X ′).

(2) If w1, w2 ∈ F (Ω, X), there exists a finite subset X ′ of X such that
F (Ω, X ′) contains both w1 and w2.

Be careful: (1) does not imply that there’s a finite subset X ′ ⊆ X such that
F (Ω, X ′) = F (Ω, X)! It says that each w ∈ F (Ω, X) is in F (Ω, X ′) for some
finite subset X ′ of X. The finite subsets, no matter how chosen, are widely
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different depending on which w ∈ F (Ω, X) we deal with. You can picture the
theorem in one sentence: expressions and identities are finite. They only use
finitely many symbols, due to the notion of length.

Proof of Lemma 1.20. (1) Let A be the set of w ∈ F (Ω, X) with the property
stated in (1). We claim that A = F (Ω, X). To show this, we show that A is a
subalgebra of F (Ω, X) containing i(X). Each i(x) ∈ i(X) is in F (Ω, {x}) and
{x} is a finite subset of X, so every element of i(X) satisfies the property and
i(X) ⊆ A. If ω ∈ Ω(0), then (ω) ∈ F (Ω, ∅) [because it’s in every subalgebra
of F (Ω, X)] and ∅ is finite, so (ω) ∈ A. Now suppose n ≥ 1, ω ∈ Ω(n) and
a1, a2, . . . an ∈ A. Then there are finite subsets X1, X2, . . . Xn ⊆ X such that
ai ∈ F (Ω, Xi) for every i. The union U = X1∪X2∪· · ·∪Xn is a finite subset of
X and ai ∈ F (Ω, U) for every i. Hence, (ωa1a2 . . . an) ∈ F (Ω, U), which means
(ωa1a2 . . . an) satisfies the property and is in A. Hence, A is a subalgebra of
F (Ω, X) containing i(X), and is therefore F (Ω, X) since the algebra is generated
by i(X).

(2) If w1, w2 ∈ F (Ω, X), there exist finite subsets X1, X2 ⊆ X with wi ∈
F (Ω, Xi) for i = 1, 2 by part (1). X1 ∪X2 is a finite subset of X and F (Ω, X1 ∪
X2) contains both w1 and w2. �

THEOREM 1.21 (1) V(S) contains the terminal algebra T (Ω).
(2) If A ∈ V(S), every subalgebra of A is in V(S).
(3) If A ∈ V(S), every homomorphic image of A is in V(S).
(4) If {Aα} is a batch of [not necessarily distinct] algebras in V(S), the prod-

uct ΠAα ∈ V(S).

Note that if A ∼= B, the isomorphism A → B is surjective, and hence, B is a
homomorphic image of A. So part (3) implies that every isomorphic copy of
an algebra in V(S) is in V(S) — and you don’t need to worry over relabeling
elements of an algebra.

Also, the fields do not form a variety. For one thing, property (4) fails: the
product of fields is not a field.

Proof of Theorem 1.21. (1) There is only one homomorphism f : F (Ω, X0) →
T (Ω) and it maps every expression to the unique element of T (Ω). Hence,
f(w1) = f(w2) for every (w1, w2) ∈ S, and T (Ω) ∈ V(S).

(2) Suppose B is a subalgebra of A, f : F (Ω, X0) → B is a homomor-
phism and (w1, w2) ∈ S. If ι : B ↪→ A is the canonical monomorphism,
ιf : F (Ω, X0)→ A is a homomorphism, hence ιf(w1) = ιf(w2) since A ∈ V(S).
Therefore, f(w1) = f(w2) since ι is injective. Consequently, B ∈ V(S).

(3) Let η : A → B be the surjective homomorphism which is hypothesized
to exist, f : F (Ω, X0) → B a homomorphism and (w1, w2) ∈ S. By Lemma
1.20(2), there exists a finite set X ′ ⊆ X0 such that F (Ω, X ′) contains w1 and w2.
For each xk ∈ X ′, choose ak ∈ A so that η(ak) = f(xk) [since η is surjective,
this is possible; and no Axiom of Choice is needed since X ′ is finite]. Pick
one random element of A [what does this proof become if A = ∅?] to be
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ak whenever xk ∈ X0 − X ′. The map xk → ak from X0 to A extends to
a homomorphism g : F (Ω, X) → A. We know that f(xk) = ηg(xk) for all
xk ∈ i(X ′), because ηg(xk) = η(ak) = f(xk). Hence f(w) = ηg(w) for all
w ∈ F (Ω, X ′) by Exercise 10(a) of Section 3. In particular, f(w1) = ηg(w1) and
f(w2) = ηg(w2). But g(w1) = g(w2), since A ∈ V(S), therefore, applying η to
both sides, f(w1) = f(w2). Therefore, B satisfies all identities in S and hence
is in V(S).

(4) Suppose f : F (Ω, X0)→ ΠAα is a homomorphism and (w1, w2) ∈ S. For
each α, recall the projection pα : ΠAα → Aα and consider pαf : F (Ω, X0)→ Aα.
Since Aα ∈ V(S), pαf(w1) = pαf(w2). Hence, f(w1)α = f(w2)α for all indices
α, so that f(w1) = f(w2). It follows that ΠAα ∈ V(S). �

Do you realize what we’ve done? We’ve just given a general proof that applies
to monoids, groups, rings, lattices, Boolean algebras, R-modules for a fixed ring
R, and so much more! Don’t get overpumped; next chapter will be even better!

You probably asked whether free algebras exist in V(S). They certainly do,
and we take the following approach to find them. If X is a set, define Φ(X,S)
to be the congruence relation on F (Ω, X) generated by the set

{(ϕ(w1), ϕ(w2)) | (w1, w2) ∈ S, ϕ a homomorphism F (Ω, X0)→ F (Ω, X)}

Note that we took all images of the identities. For example, the distributive
law a(b+ c) = ab+ ac in a ring, after substituting into b the expression x+ yz,
yields a((x + yz) + c) = a(x + yz) + ac, and that must hold in a ring. By
closing the relation into a congruence, we also regarded complicated results like
1x+ (ab)c = x+ a(bc).

Now put FS(Ω, X) = F (Ω, X)/Φ(X,S). We show:

THEOREM 1.22 The Ω-algebra FS(Ω, X) along with the map j : X →
FS(Ω, X) sending x→ x is a free algebra for V(S) given by X.

Proof of Theorem 1.22. First we show that FS(Ω, X) ∈ V(S). Suppose f :
F (Ω, X0) → FS(Ω, X) is a homomorphism and (w1, w2) ∈ S. X has a finite
subset X ′ such that w1, w2 ∈ F (Ω, X ′) by Lemma 1.20(2). For each xk ∈ X ′,
choose ak ∈ F (Ω, X) so that ak = f(xk). Pick one random element of F (Ω, X)
to be ak for each xk ∈ X0−X ′. The map xk → ak from X0 to F (Ω, X) extends
to a homomorphism g : F (Ω, X0) → F (Ω, X). Notice that if π : F (Ω, X) →
FS(Ω, X) is the canonical epimorphism, f(xk) = πg(xk) for xk ∈ X ′, and hence,
f(w1) = πg(w1) and f(w2) = πg(w2) by Exercise 10(a) of Section 3. However,
(g(w1), g(w2)) ∈ Φ(X,S) by definition, whence πg(w1) = πg(w2), since Φ(X,S)
is the kernel of π. Furthermore, f(w1) = f(w2), so that FS(Ω, X) ∈ V(S).

Now let A ∈ V(S) and f : X → A a set map. This yields an Ω-algebra
homomorphism f1 : F (Ω, X)→ A such that f1j = f . We claim that Φ(X,S) ⊆
ker f1: to show this, we need only show that (ϕ(w1), ϕ(w2)) ∈ ker f1 whenever
(w1, w2) ∈ S and ϕ : F (Ω, X0)→ F (Ω, X) is a homomorphism. This is because
Φ(X,S) is generated by the pairs of that form, hence any congruence relation

3



containing them — in particular, ker f1 — contains Φ(X,S). The claim follows
from f1ϕ being a homomorphism F (Ω, X0) → A; hence f1ϕ(w1) = f1ϕ(w2)
since (w1, w2) ∈ S and A ∈ V(S). Thus (ϕ(w1), ϕ(w2)) is in the kernel of f1.
Therefore, Φ(X,S) ⊆ ker f1.

By Theorem 1.10, there is a homomorphism f1 : FS(Ω, X) → A such that
f1π = f1 with π the canonical epimorphism. Also, notice that j = πi. Hence
f1j = f1πi = f1i = f .

Now suppose f
′
1 : FS(Ω, X)→ A is also a homomorphism satisfying f

′
1j = f .

Put f ′1 = f
′
1π. Then f ′1i = f

′
1πi = f

′
1j = f . But f1 is the unique homomor-

phism F (Ω, X) → A such that f1j = f , so we must have f1 = f ′1. Hence

f1π = f
′
1π. Since π is surjective, f1 = f

′
1 follows, and f

′
1 is unique. �

EXAMPLE
The free group given by X0 consists of strings made up of elements of X0 and

their formal inverses. For example, x1x
−1
3 x0x2x

−1
0 is in the free group; however,

x2x
−1
2 simplifies to e.

We have shown that if {Aα} is a family of V(S) algebras, then A = ΠAα ∈ V(S).
If pα : A → Aα is defined by pα(a) = aα, recall that the following holds [see
Section 3]:

Whenever fα : B → Aα is a homomorphism for each α, there is a
unique homomorphism f : B → ΠAα such that fα = pαf for all α.

The coproduct comes from reversing the arrows. It can be seen to combine
algebras together, and can always be found due to the existence of free algebras.

DEFINITION
If {Aα} is a batch of V(S) algebras, a coproduct [or sum] of the Aα’s is

defined to be an algebra A ∈ V(S) along with homomorphisms iα : Aα → A
such that whenever B ∈ V(S) and fα : Aα → B for each α, there is a unique
homomorphism f : A → B such that fiα = fα for all α. The iα are called
injection maps.

EXAMPLES
1. Coproducts in the variety of sets are disjoint unions, because any two

maps A→ C,B → C combine to a unique map A ]B → C.
2. If the {Aα} are R-modules, then their coproduct [normally called their

direct sum] is the set ΣAα of a ∈ ΠAα such that aα 6= 0 for finitely many α’s.
The injection map iα : Aα → ΣAα is defined by iα(a)α = a, iα(a)β = 0 when
β 6= α.

3. Exercise 14 shows that a coproduct of groups is a free product. If the Gα
are groups, every nonidentity element of

∐
Gα can be written uniquely in the

form x1x2 . . . xn where each xi ∈ Gα for some α, xi 6= e and xi, xi+1 are never
in the same operand group.
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LEMMA 1.23 Every V(S) algebra is a homomorphic image of a free V(S)
algebra.

Proof of Lemma 1.23. If A is a V(S) algebra, the identity map A → A [where
the domain is regarded as a set] extends to a homomorphism f : FS(Ω, A)→ A
satisfying f(x) = x for all x ∈ A. Each a ∈ A is equal to f(a), so f is surjective.
Hence, A is a homomorphic image of FS(Ω, A). �

THEOREM 1.24 Any V(S) algebras have a coproduct in V(S), which is unique
up to isomorphism.

The proof yields a legitimate recipe for finding coproducts in V(S). However,
this recipe is deferred to Section 2.4, because it [sadly] makes this section too
long.

Proof of Theorem 1.24. We claim that V(S) algebras which possess coproducts
include all free algebras and are closed under homomorphic images. Then since
every algebra is a homomorphic image of a free algebra by Lemma 1.23, it will
follow that all algebras have coproducts.

First suppose A is a coproduct of the Aα given by homomorphisms iα :
Aα → A and for each α, ηα : Aα → Aα is a surjective homomorphism. Now
let Θα = ker ηα, iαΘα = {(iα(a), iα(b)) | (a, b) ∈ Θα} and Θ the congruence
relation on A generated by

⋃
iαΘα. [This constitutes our first trick!] We claim

that A/Θ is a coproduct of the Aα.
Let π be the canonical epimorphism A → A/Θ and vα = πiα : Aα →

A/Θ. We claim that Θα ⊆ ker vα. To show this, suppose (a, b) ∈ Θα. Then
(iα(a), iα(b)) ∈ iαΘα ⊆ Θ. Hence, πiα(a) = πiα(b) by definition of π, and
vα(a) = vα(b), which means that (a, b) ∈ ker vα. Therefore, there is a unique
homomorphism vα : Aα → A/Θ such that vα = vαηα.

So we have a homomorphism from each Aα to A/Θ. Now suppose B ∈ V(S)
and fα : Aα → B are homomorphisms. Let fα = fαηα : Aα → B. Then since
A is a coproduct of the Aα’s, there is a unique homomorphism f : A→ B such
that fα = fiα for all α.

The statements vα = πiα, vα = vαηα, fα = fαηα, fα = fiα are organized in
the following commutative diagram.

B

A
π
>

f >

A/Θ

Aα

iα

∧

ηα
>

fα

>

vα >

Aα

vα

∧ fα

>

We claim that Θ ⊆ ker f : since Θ is generated by
⋃
iαΘα, we need only show

that iαΘα ⊆ f for every α to prove our claim. Whenever (a′, b′) ∈ iαΘα,
there exists (a, b) ∈ Θα such that a′ = iα(a) and b′ = iα(b). Furthermore,
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ηα(a) = ηα(b) so that f(a′) = fiα(a) = fα(a) = fαηα(a) = fαηα(b) = fα(b) =
fiα(b) = f(b′), and (a′, b′) ∈ ker f . Therefore, Θ ⊆ ker f .

Consequently, f injectifies to a homomorphism f : A/Θ → B such that
f = fπ, where π is the canonical epimorphism A → A/Θ. We also have
fvα = fα because fvαηα = fvα = fπiα = fiα = fα = fαηα, and ηα can be
cancelled off the right due to surjectivity.

To show that f is unique, suppose f
′

: A/Θ → B also satisfies f
′
vα = fα.

Then f ′ = f
′
π satisfies f ′iα = f

′
πiα = f

′
vα = f

′
vαηα = fαηα = fα. Since f is

the unique homomorphism A → B such that fiα = fα, we must have f = f ′.

Therefore, fπ = f
′
π, hence f = f

′
since π is surjective. Therefore, f is unique,

and A/Θ is a coproduct of the Aα’s.
Now we show that free V(S) algebras have a coproduct. Let Xα be sets and

Aα = FS(Ω, Xα). Now let X =
⊎
Xα and we show that A = FS(Ω, X) is a

coproduct of the Aα’s, with iα : Aα → A mapping each element of Xα to the
corresponding element of X.

Suppose B is an Ω-algebra and fα : Aα → B for each α. Define f : X → B
mapping each x ∈ Xα to fα(x). Then since A = FS(Ω, X), there is a unique
f : A → B such that f = f |X. fα = fiα for each α follows from fα|Xα =
fiα|Xα, and f |X is uniquely determined by this property, making f unique.
This concludes the proof of the coproduct’s existence.

The uniqueness of the coproduct is similar to Theorem 1.19 and is left to
the reader. �

EXERCISES

1. If Ω(0) = {e}, Ω(1) = {i}, Ω(2) = {p} and

S = {((p(px0x1)x2), (px0(px1x2))), ((p(e)x0), x0), ((p(ix0)x0), (e))}

then V(S) is the class of groups. [Hint : Exercise 4(a) of Section 1.]

2. Suppose Ω(0) = {0, 1}, Ω(1) = {n}, Ω(2) = {s, p} and S consists of the
following pairs:

((s(sx0x1)x2), (sx0(sx1x2))) ((p(px0x1)x2), (px0(px1x2)))
((sx0x1), (sx1x0)) ((px0(sx1x2)), (s(px0x1)(px0x2)))

((s(0)x0), x0) ((p(sx0x1)x2), (s(px0x2)(px1x2)))
((sx0(nx0)), (0)) ((p(1)x0), x0)

((px0(1)), x0)

(a) Rewrite the operators and identities so they are easier to read.

(b) Convince yourself that V(S) is the class of rings.

3. Express the class of rings with involution as a variety.

4. There are no axioms for the pointed set — it’s just a set with a nullary
operator. Does this prevent the pointed sets from being a variety?
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5. The free monoid given by a set X consists of the strings made up of
elements of X, including the empty string. For example, if X = X0, one
of the elements is x1x4x2x2x5x1.

6. (a) The commutative monoids form a variety.

(b) Describe the free commutative monoid given by a set.

7. Every element of the free ring given by a set X is a formal sum of strings
made up of elements of X and their formal negatives. For example, x1x3−
x2+x4x6x4 is in the free ring given by X0; and (x1+x4)(x2x3+x2) can be
changed to x1x2x3 +x4x2x3 +x1x2 +x4x2 so it doesn’t have parentheses.

8. If M is a fixed monoid, the free M -action given by a set X is M×X given
by m(a, x) = (ma, x) for m, a ∈ M,x ∈ X, and i : X → M ×X sending
x→ (1, x).

9. Let X ′ = {x1, x2, . . . xn} and v1, v2, . . . vk, w1, w2, . . . wk be expressions in
X ′. Then

A = 〈x1, x2, . . . xn | v1 = w1, v2 = w2, . . . , vk = wk〉

is defined to be the result of taking the free V(S) algebra given by X ′,
and then dividing out the congruence relation generated by the (vj , wj)’s.
[This is usually done in the variety of groups.] If B is a V(S) algebra,
show that a map f : X ′ → B extends to a homomorphism A→ B if and
only if substituting each xi for f(xi) in any statement vj = wj yields a
true statement in B.

10. Let IS(Ω) = FS(Ω, ∅). IS(Ω) is called the initial algebra for the variety
V(S).

(a) IS(Ω) is nonempty if and only if Ω contains a nullary operator.

(b) If V(S) is the class of rings, IS(Ω) ∼= Z. [Hint : Exercise 7.]

(c) For each A ∈ V(S), there is exactly one homomorphism IS(Ω) → A,
and its image is the smallest subalgebra of A.

(d) A V(S) algebra is a homomorphic image of IS(Ω) if and only if it has
no subalgebra except itself.

11. Assume A
∐
B denotes a coproduct of A and B in V(S).

(a) If A ∼= C and B ∼= D, then A
∐
C ∼= B

∐
D

(b) (A
∐
B)

∐
C ∼= A

∐
(B

∐
C)

(c) A
∐
B ∼= B

∐
A

(d) IS(Ω)
∐
A ∼= A

12. If S ⊆ T ⊆ F (Ω, X0), every Ω-algebra in V(T ) is in V(S). [V(T ) is said
to be a subvariety of V(S) in this case.]
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13. Suppose V(S) is a variety in which IS(Ω) ∼= T (Ω). Then every V(S)
algebra has a unique one-element subalgebra. Furthermore, for all A,B ∈
V(S), there exists a homomorphism A → B. [If the initial algebra is
isomorphic to the terminal algebra, it can be called a zero algebra.]

14. A coproduct
∐
Aα of V(S) algebras is said to be a free product if every

iα : Aα →
∐
Aα is injective. If a homomorphism Aα → Aβ exists for all

α, β, then
∐
Aα is a free product. [Hint : For each α, let fβ : Aβ → Aα be

any homomorphisms, subject to the condition that fα = 1Aα
. There is a

homomorphism f :
∐
Aα → Aα such that fiβ = fβ for all β. Use this to

show that iα is injective.]

15. (a) If V(S) is a variety in which all operators are nullary, when is a V(S)
algebra free?

(b) If V(S) is a variety in which all operators are unary, show that V(S)
is the variety of M -actions for some fixed monoid M . Conclude that
coproducts in V(S) are disjoint unions, and subalgebras of a V(S) algebra
include the empty set and are closed under unions.
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1.10 - Birkhoff’s Theorem

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

An interesting thing about varieties is this: If you use identities to restrict the
Ω-algebras in a class, the products and coproducts both exist, but the product
stays the same, whereas the coproduct changes. Likewise, the terminal algebra
T (Ω) stays as its 1-element self, but the initial algebra IS(Ω) may be different.
So we can claim that a variety V(S) can be closed under products, but “closed
under coproducts” doesn’t really make sense.

Let’s have another look at the variety’s properties in Theorem 1.21.

(1) C contains the terminal algebra T (Ω).
(2) If A ∈ C, every subalgebra of A is in C.
(3) If A ∈ C, every homomorphic image of A is in C.
(4) If {Aα} is a batch of [not necessarily distinct] algebras in C, the product
ΠAα ∈ C.

Our main goal is to show the converse of Theorem 1.21: every class C of Ω-
algebras satisfying conditions (1)-(4) is a variety. This is known as the HSP
theorem [homomorphic-image subalgebra product] in universal algebra. Note
that (4) states V(S) is closed under arbitrary products — even if there are in-
finitely many factors. [Otherwise, the theorem would not hold; see Exercise 1.]
We bring two statements from Section 6 here for our proof:

Fact 1. A subdirect product of Aα’s is isomorphic to a subalgebra of their
product. [definition]
Fact 2. If Φα’s are congruence relations on A and Φ = ∩Φα, then A/Φ is a
subdirect product of the A/Φα’s. [Exercise 1 of Section 6]

Now suppose C satisfies conditions (1)-(4). To begin with, condition (3) implies
that C is closed under isomorphic copies.

Now let X be a set. If A ∈ C is nonempty, there exists a homomorphism
F (Ω, X)→ A. Let Id(X,A) be the intersection of all kernels of homomorphisms
F (Ω, X)→ A. Then Id(X,A) is the congruence relation consisting of the iden-
tities satisfied by A. We claim that F (Ω, X)/Id(X,A) ∈ C. This is because
for each homomorphism f : F (Ω, X) → A, surjectification and injectification
together show that F (Ω, X)/ ker f ∼= im f . im f is a subalgebra of A, hence is
in C by condition (2). By closure under isomorphic copies, F (Ω, X)/ ker f ∈ C.

So C contains F (Ω, X)/ ker f for every homomorphism f : F (Ω, X) → A.
Since Id(X,A) is the intersection of these ker f ’s, F (Ω, X)/Id(X,A) is a sub-
direct product of the algebras of the form F (Ω, X)/ ker f by Fact 2. Since a
subdirect product of algebras is a subalgebra of the product, conditions (2) and
(4) show that C contains any subdirect product of algebras in C. This is why
F (Ω, X)/Id(X,A) ∈ C.
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Now let Id(X, C) =
⋂

Id(X,A) where the intersection is taken over all
nonempty A ∈ C [there is at least one such algebra, namely T (Ω)]. Id(X, C) is
the set of identities satisfied by all algebras in C and is called the congruence
relation of identities for C. Since F (Ω, X)/Id(X,A) ∈ C for all nonempty
A ∈ C, the closure of C under subdirect products [seen in the previous para-
graph] implies F (Ω, X)/Id(X, C) ∈ C. We claim this:

LEMMA 1.25 If C is a class of Ω-algebras satisfying conditions (1)-(4) in
Theorem 1.21, and X is a set, F (Ω, X)/Id(X, C) along with the map i : X →
F (Ω, X)/Id(X, C) sending x→ x is a free algebra for C given by X.

Proof of Lemma 1.25. Assume π refers to the canonical epimorphism F (Ω, X)→
F (Ω, X)/Id(X, C), and j : X → F (Ω, X) is the usual injection into the free
algebra. Then i = πj.

Let A ∈ C and f : X → A a set map. f extends to a homomorphism
g : F (Ω, X)→ A with gj = f . Furthermore, Id(X, C) ⊆ Id(X,A) ⊆ ker g [since
Id(X, C) is the intersection of the Id(X,A)’s, and similarly for each Id(X,A)],
so g can be injectified to g : F (Ω, X)/Id(X, C) → A with gπ = g. We see that
gi = gπj = gj = f .

Now suppose g′ : F (Ω, X)/Id(X, C) → A also satisfies g′i = f . Take
g′ = g′π; then g′j = g′πj = g′i = f . But g is the unique homomorphism
F (Ω, X) → A satisfying gj = f [since F (Ω, X) is free in the class of all Ω-
algebras], hence g = g′. Furthermore, gπ = g′π and g = g′ since π is surjective.
Therefore g is unique, and (F (Ω, X)/Id(X, C), i) constitutes a free algebra for
C given by X. �

Now here’s our main result!

THEOREM 1.26 (BIRKHOFF’S THEOREM) A class C of Ω-algebras is a
variety if and only if it satisfies conditions (1)-(4) above.

Proof of Theorem 1.26. If C is a variety, it satisfies conditions (1)-(4) by Theorem
1.21. Conversely, suppose C is a class of Ω-algebras satisfying conditions (1)-(4).
Let S = Id(X0, C). Then S is the set of identities satisfied by every algebra in
C; furthermore, C is contained in the variety V(S). We show that V(S) ⊆ C, so
that C = V(S) is a variety.

Suppose A ∈ V(S). Let X ⊆ A be a set of generators of A. The injection
map X → A extends to a homomorphism f : F (Ω, X) → A sending each
expression in X to its value in A. Since X ⊆ im f and generates A, f is
surjective. We claim that Id(X, C) ⊆ ker f : let (w1, w2) ∈ Id(X, C). By Lemma
1.20(2), X has a finite subset X ′ such that w1, w2 are in F (Ω, X ′). Exercise 2
shows that there exist maps λ : X → X0, ζ : X0 → X satisfying ζλ(x) = x
for all x ∈ X ′. The map iζ : X0 → F (Ω, X) extends to a homomorphism
ζ1 : F (Ω, X0) → F (Ω, X) sending x ∈ X0 to ζ(x). Likewise, λ extends to a
homomorphism λ1 : F (Ω, X)→ F (Ω, X0) sending x ∈ X to λ(x). Furthermore,
ζ1λ1(x) = x when x is a symbol in F (Ω, X) from X ′. Since those symbols
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generate F (Ω, X ′), ζ1λ1 fix all elements of F (Ω, X ′), in particular, w1 and w2.
Thus ζ1λ1(w1) = w1 and ζ1λ1(w2) = w2. Consider fζ1 : F (Ω, X0) → A. Since
A ∈ V(S), S = Id(X0, C) is contained in the kernel of fζ1, so it can be injectified
into a homomorphism f1 : F (Ω, X0)/Id(X0, C) → A such that f1π = fζ1, with
π the canonical epimorphism as usual. Since F (Ω, X0)/Id(X0, C) ∈ C though
[by the discussion preceding Lemma 1.25], πλ1 : F (Ω, X)→ F (Ω, X0)/Id(X0, C)
has kernel containing Id(X, C). In particular, πλ1(w1) = πλ1(w2). Furthermore,
f(w1) = fζ1λ1(w1) = f1πλ1(w1) = f1πλ1(w2) = fζ1λ1(w2) = f(w2) and
(w1, w2) ∈ ker f . Therefore, Id(X, C) ⊆ ker f .

As a consequence, f can be injectified into a homomorphism which maps
F (Ω, X)/Id(X, C) → A by Theorem 1.10, which is surjective because f is.
Therefore, A is a homomorphic image of F (Ω, X)/Id(X, C). By the discus-
sion preceding Lemma 1.25, F (Ω, X)/Id(X, C) ∈ C; hence A ∈ C by condition
(3). Therefore, C = V(S). �

Recall Theorem 1.24: in the variety, coproducts always exist and are unique up
to isomorphism. The conclusion is that if conditions (1)-(4) are satisfied, there
is a “slight closure” under coproducts: any indexed collection of Ω-algebras in
V(S) have some coproduct in V(S) unique up to isomorphism, but it may not
be isomorphic to their coproduct in all Ω-algebras.

Likewise, V(S) contains an initial algebra IS(Ω), but it doesn’t have the
same meaning as I(Ω). It turns out that since IS(Ω) has no subalgebra except
itself, it’s a homomorphic image of I(Ω) by Exercise 9(d) of Section 9.

EXERCISES

1. If a class of Ω-algebras satisfies conditions (1)-(3) of a variety and is closed
under finite products, show by example that it need not be a variety.

2. If X0 = {x0, x1, . . . }, X is a set and X ′ a finite subset of X, show without
using the Axiom of Choice that there exist maps λ : X → X0, ζ : X0 → X
satisfying ζλ(x) = x for all x ∈ X ′.

3. (YONEDA’S THEORY) Let C be a class of Ω-algebras [which may not be
a variety]. For A,B ∈ C, let hom(A,B) denote the set of homomorphisms
from A to B. Fix A ∈ C. A natural transformation for A is an object
η which assigns each B ∈ C a map ηB : hom(A,B)→ B satisfying

ηB′(kf) = k(ηB(f))

for all homomorphisms f : A→ B, k : B → B′.

(a) If ω ∈ Ω(0), then [ω] is a natural transformation for A when defined
by [ω]B(f) = (ωB) whenever B ∈ C, f : A→ B.

(b) If n ≥ 1, ω ∈ Ω(n) and η1, η2, . . . ηn are natural transformations for
A, then (ωη1η2 . . . ηn) given by

(ωη1η2 . . . ηn)B(f) = (ωη1B(f)η2B(f) . . . ηnB(f))
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for B ∈ C, f : A→ B is also a natural transformation for A.

We have established an Ω-algebra structure for the set N of natural trans-
formations for A. We show that N is actually isomorphic to A.

(c) If a ∈ A, define [a]B(f) = f(a) for B ∈ C, f : A → B. Then [a] is a
natural transformation for A.

(d) The map ϕ : A→ N sending a→ [a] is an isomorphism, whose inverse
is the map ϕ−1 : N → A sending η → ηA(1A).
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1.11 - Takeoffs and Universals

Nicholas McConnell

(Universal Algebra)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if
desired. It may be referenced later though.

Now that varieties are characterized, one must ask how you can go from one
to another. We have briefly discussed extension signatures in the first section,
but this section generalizes the idea.

To begin with, every group G is a monoid, because it has an associative
binary operation with an identity. That’s not all the group needs, but it still
has it. The monoid structure on G is part of the group structure, with some
details missing. This structure takes off algebraically, in the sense that every
group homomorphism of groups is also a monoid homomorphism of the monoids.

Also, every ring R is a rng when you disregard the identity element, and a
ring homomorphism of rings is automatically a rng homomorphism. [Note that a
rng homomorphism can have rings for the domain and codomain without being
a ring homomorphism — take the zero map Z → Z, for example. However, a
monoid homomorphism of groups is always a group homomorphism.]

Another interesting idea is this: Let R be a fixed ring, U its group of units.
If M is an R-module, then U acts on M by assigning ux for u ∈ U, x ∈ M to
ux given by the R-module structure for M . Thus every R-module is a U -action
in such a way that every homomorphism of R-modules is a homomorphism of
the U -actions.

However, suppose some mathematics alien assigns every group G a ring
structure in a random way. Then it’s nearly impossible for every group homo-
morphism to be a homomorphism of the rings. We’re not interested in that
idea.

In each of the preceding examples, we formed variety by leaving certain
operations and forgetting others. But here’s a more nontrivial example: If A
is an associative algebra over a commutative ring R, A becomes a Lie algebra
by defining [a : b] = ab− ba. This operation isn’t freshly one of the associative
algebra’s operations, but it is derived from the structure. Every homomorphism
of associative algebras is evidently a homomorphism of the Lie algebras, because
f(ab− ba) = f(ab)− f(ba) = f(a)f(b)− f(b)f(a).

So the basic idea is to take the operations in one signature and define them
using expressions from the other, but that’s not good enough. Remember that
to be in a variety, an algebra need not only have operations, but it must also
satisfy identities. If the identities aren’t satisfied in the first legitimate algebra,
tough luck changing the structure.

Here’s the rigorous definition of a takeoff of varieties:

DEFINITION
Let Ω1,Ω2 be signatures, V(S1) and V(S2). A takeoff from V(S1) to V(S2)

is a mathematical object T with the following structure:
(1) For each ω ∈ Ω2(n), Tω is some element of FS1

(Ω1, {x1, x2, . . . xn}).
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(2) Suppose h : F (Ω2, X0)→ FS1(Ω1, X0) is the set map sending each symbol
in X0 to itself in the codomain, and each expression (ωa1a2 . . . an) ∈ F (Ω2, X0)
to ϕ(Tω) with ϕ : FS1

(Ω1, {x1, x2, . . . , xn}) → FS1
(Ω1, X0) the homomorphism

satisfying ϕ(xi) = h(ai) for 1 ≤ i ≤ n. Then h(w1) = h(w2) for all (w1, w2) ∈
S2.

To make this definition less confusing, recall that FS1(Ω1, {x1, x2, . . . xn}) con-
sists of congruence classes of Ω1-exrpessions in x1, x2, . . . xn given by the iden-
tities in S1. Hence, Tω is one of these congruence classes, giving an expression
to define ω as done with the Lie algebra.

If T : V(S1) → V(S2) is a takeoff and A ∈ V(S1), then for each ω ∈ Ω2(n),
a1, a2, . . . an ∈ A, define (ωa1a2 . . . an) to equal ϕ(Tω) where

ϕ : FS1
(Ω1, {x1, x2, . . . , xn})→ A

is the V(S1) homomorphism sending xi → ai. Taking FS1
(Ω1, X0) for A, the

map h in Condition (2) of the definition is then basically a homomorphism of
Ω2-algebras, and the condition says that the identities in S2 are satisfied for
FS1(Ω1, X0).

The fundamental theorem about takeoffs is this:

THEOREM 1.27 Let T : V(S1)→ V(S2) be a takeoff of varieties. Then:
(1) Every A ∈ V(S1) becomes an algebra in V(S2) when defined as above.
(2) Every Ω1-homomorphism of algebras in V(S1) is also an Ω2-homomorphism

of the algebras in V(S2) [i.e. it preserves the operators in Ω2].

Remarkably, the converse of this theorem holds; see Exercise 3. The V(S2)
structure defined above is called the derived structure from the takeoff.

Proof of Theorem 1.27. (1) The definition above defines each ω ∈ Ω2(n) for A.
We need only show that A satisfies every identity in S2. Let f : F (Ω2, X0)→ A
be a homomorphism, h : F (Ω2, X0)→ FS1

(Ω1, X0) be the homomorphism given
by Condition (2) in the definition of a takeoff. Since A ∈ V(S1), the map
X0 → A sending xi → f(xi) extends to a homomorphism j : FS1

(Ω1, X0)→ A,
and evidently jh = f . If (w1, w2) ∈ S2, h(w1) = h(w2) by definition of a takeoff,
hence f(w1) = jh(w1) = jh(w2) = f(w2) and (w1, w2) ∈ ker f . Therefore,
S ⊆ ker f for every homomorphism f : F (Ω2, X0) → A, which means that
A ∈ V(S2).

(2) Suppose A,B ∈ V(S1) and f : A → B is a Ω1-homomorphism. Let
ω ∈ Ω2(n), we wish to show that f(ωa1a2 . . . an) = (ωf(a1)f(a2) . . . f(an)) for
a1, a2, . . . an ∈ A. Let ϕA : FS1(Ω, {x1, x2, . . . xn}) → A be the homomorphism
sending xi → ai, and ϕB : FS1(Ω, {x1, x2, . . . xn}) → B the homomorphism
sending xi → f(ai). Evidently ϕB = fϕA because fϕA sends xi → f(ai) and
ϕB is unique for this property. However, by definition of ω in A and B,

ϕA(Tω) = (ωa1a2 . . . an)
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ϕB(Tω) = (ωf(a1)f(a2) . . . f(an))

Applying f to the first of these,

fϕA(Tω) = f(ωa1a2 . . . an)

Therefore, since fϕA = ϕB , it follows that f preserves ω and is an Ω2-homomor-
phism, completing the proof. �

The takeoffs act a lot like homomorphisms of algebras in a single variety. The
reader is left to do Exercises 1-7 and make discoveries.

Universals

The notion of a free algebra given by a set can be generalized to any takeoff.
Recall the takeoff from rings to rngs, for instance; we shall find a fundamental
ring enveloping any rng R. Define the ring R = Z×R as follows:

(n, r) + (n′, r′) = (n+ n′, r + r′)

(n, r)(n′, r′) = (nn′, nr′ + n′r + rr′)

0 = (0, 0), 1 = (1, 0),−(n, r) = (−n,−r)

Direct verification shows that R is a ring under these operations, and that
i : R→ R given by i(r) = (0, r) is a rng homomorphism.

Now suppose S is any ring and f : R → S is a rng homomorphism. Define
h : R → S by j(n, r) = n1 + f(r). Then h is readily seen to be a ring homo-
morphism, and of course, f = hi. In fact, h is unique for this property, because
if f = h′i where h′ is another ring homomorphism R→ S,

h′(n, r) = h′(n(1, 0) + (0, r)) = h′(n1 + i(r)) = nh′(1) + h′i(r) = n1 + f(r)

Hence, h′ = h.
Notice that even if R is already a ring, R may be larger than R. This is

because of a basic property failed by the takeoff from rings to rngs; see Exercise
8. Summarizing this to any takeoff, we have:

DEFINITION
Let T : V(S1)→ V(S2) be a takeoff of varieties. If A ∈ V(S2), a universal

V(S1)-algebra enveloping A for the takeoff is a pair (U, i) where U ∈ V(S1)
and i : A → U is an Ω2-homomorphism, such that whenever (U ′, f) is another
pair with U ′ ∈ V(S1) and f : A → U ′ an Ω2-homomorphism, there exists a
unique Ω1-homomorphism h : U → U ′ such that f = hi.

The foregoing example shows that R is a universal ring enveloping the rng R.
Also, if V(S2) is the variety of sets and T is the unique takeoff [Exercise 4(a)],
the universal U is the free V(S1)-algebra given by the set A.
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It can be shown that a universal is unique up to isomorphism, and in fact
exists with a subtle and interesting recipe:

THEOREM 1.28 Let T : V(S1) → V(S2) be a takeoff of varieties, and
A ∈ V(S2). If (U, i) and (U ′, i′) are both universal V(S1)-algebras envelop-
ing A, there exists a unique isomorphism σ : U → U ′ such that i′ = σi.

Proof of Theorem 1.28. Since (U ′, i′) is a pair with U ′ ∈ V(S1) and i′ : A→ U ′

a Ω2-homomorphism, but (U, i) is universal for this property, there exists a
unique Ω1-homomorphism σ : U → U ′ such that i′ = σi. Reversing the roles of
(U ′, i′) and (U, i) shows that since (U, i) has a property (U ′, i′) is universal for,
there is an Ω1-homomorphism σ′ : U ′ → U such that i = σ′i′. Furthermore,
σ′σi = σ′i′ = i. Since (U, i) is universal though, 1U is the unique homomor-
phism U → U such that 1U i = i, and hence, σ′σ = 1U by uniqueness. Likewise,
σσ′ = 1U ′ . Therefore, σ is an isomorphism with inverse σ′. �

THEOREM 1.29 Let T : V(S1) → V(S2) be a takeoff of varieties, and
A ∈ V(S2). Then there exists a universal (U, i) enveloping A.

Proof of Theorem 1.29. Let F = FS1
(Ω1, A) where A is regarded as a set, and

let j : A → F be the canonical set map into the free algebra. Then, let Θ be
the congruence relation on F generated by tuples of the form

(j(ωa1a2 . . . an), (ωj(a1)j(a2) . . . j(an)))

with ω ∈ Ω2(n) and a1, a2, . . . an ∈ A. [The latter of these expressions used the
derived Ω2-structure for F .] Finally, let π : F → F/Θ the canonical epimor-
phism, i = πj. We claim that (F/Θ, i) is a universal enveloping A.

To begin with, i : A → F/Θ is an Ω2-homomorphism because whenever
ω ∈ Ω2(n) and a1, a2, . . . an ∈ A, j(ωa1a2 . . . an)Θ(ωj(a1)j(a2) . . . j(an)), so
that

πj(ωa1a2 . . . an) = π(ωj(a1)j(a2) . . . j(an)) = (ωπj(a1)πj(a2) . . . πj(an))

by virtue of π. Hence, πj = i is a homomorphism.
Now suppose B ∈ V(S1) and f : A → B is a Ω2-homomorphism. Since

B ∈ V(S1), the set map f extends to an Ω1-homomorphism f : F → B such
that f = fj. It turns out that Θ ⊆ ker f because f is a homomorphism, and
hence,

fj(ωa1a2 . . . an) = f(ωa1a2 . . . an) = (ωf(a1)f(a2) . . . f(an))

= (ωfj(a1)fj(a2) . . . fj(an)) = f(ωj(a1)j(a2) . . . j(an))

Thus ker f contains all tuples of the form (j(ωa1a2 . . . an), (ωj(a1)j(a2) . . . j(an))),
and hence, Θ since it’s generated by those tuples. By Theorem 1.10, a homo-
morphism h : F/Θ → B satisfying f = hπ exists. Meanwhile, f = hi since
f = fj = hπj = hi.
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To show that h is unique, suppose h′ : F/Θ→ B is also an Ω1-homomorphism

satisfying f = h′i. Then f = h′i = h′πj = f
′
j, where f

′
= h′π. However, f is

the unique homomorphism F → B satisfying f = fj, so that f = f
′

by unique-
ness. Finally, hπ = h′π, and hence, h = h′ since π is surjective. Therefore, h is
unique and the proof is concluded. �

The proof of the existence of universals outlined a “recipe” for finding them:
Let T : V(S1)→ V(S2) be a takeoff of varieties, and A ∈ V(S2).

1. First, take the free V(S1)-algebra F given by the set A. This induces a
set map A→ F with a universal mapping property.

2. To make that map a homomorphism, take each expression in F using one
operator in Ω2 as taken from Ω1’s operators, and identify that expression with
its value in A, by factoring out the generated congruence relation. Make no
more identifications than that, so the map is universal for all homomorphisms
from A to any Ω1-algebra.

3. Compose the set map in Step 1 with the canonical epimorphism F → F/Θ
and you get an Ω2-homomorphism A→ F/Θ. F/Θ with that map is the desired
universal.

Remember, any two universals are isomorphic by Theorem 1.27, so don’t
expect to have different choices for the results.

To try the recipe, let M be a fixed monoid, N a submonoid of M . Then every
M -action X becomes an N -action if we restrict the actors in the monoid, and
this is clearly a takeoff. Now let X be an N -action; we wish to find the universal
M -action enveloping X. Step 1 tells us to start with the free M -action given by
X, which we know is M ×X, along with the map x→ (1, x) from X →M ×X.

To do Step 2, we must take each expression in M × X [given by the free
M -action] resulting in scalarly multiplying a symbol in X by an element of N ,
and identify it with its actual value in the N -action X. If x ∈ X and n ∈ N ,
the former of these is (n, x), whereas the latter is nx → (1, nx). So if Θ is the
congruence relation on M ×X generated by {((n, x), (1, nx)) | x ∈ X,n ∈ N},
then (M × X)/Θ is the desired universal M -action. Step 3 tells us that the
corresponding map X → (M ×X)/Θ is given by x→ (1, x).

A more difficult example is the group enveloping a monoid M . Knowing
what a free group is, one can easily apply Steps 1-3. The resulting group G
consists of expressions of the form [m1]m−12 m3m

−1
4 . . .m−1n−1[mn], where mi 6= 1

and mi 6= mi+1 in the reduced case.

EXERCISES

1. Let T : V(S1)→ V(S2) be a takeoff of varieties and A ∈ V(S1).

(a) If B is a subalgebra of the Ω1-algebra A, then B is also a subalgebra of
A as an Ω2-algebra, and the Ω2-subalgebra structure on B is the same as
the derived structure from the Ω1-subalgebra structure. [Hint : Consider
the canonical monomorphism.]
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(b) If Φ is a congruence relation on the Ω1-algebra A, then Φ is also a con-
gruence relation of A as an Ω2-algebra, and the Ω2-quotient structure on
A/Φ is the same as the derived structure from the Ω1-quotient structure.
[Hint : Consider the canonical epimorphism.]

(c) If {Aα} is a collection of algebras in V(S1), then the derived Ω2-
structure of ΠAα is the same as the structure for the product of the Aα’s
each with the derived structure. [Hint : Consider the projections from the
product.]

2. An affine is a set X with a ternary operator abc and the identities
(abc)df = ab(cdf) and abb = a = bba. Show that a group G is an affine
when defined by abc = ab−1c, and that this is a takeoff from the groups
to the affines.

3. Let V(S1) and V(S2) be varieties. Suppose every algebra in V(S1) is given
a structure for an algebra in V(S2), such that an Ω1-homomorphism of
algebras in V(S1) is also an Ω2-homomorphism. For each ω ∈ Ω2(n),
define Tω = (ωx1x2 . . . xn) ∈ FS1

(Ω1, {x1, x2, . . . xn}). Show that T is
the unique takeoff V(S1)→ V(S2) in which the ensuing structures are the
derived structures.

4. (a) Let S be the variety of sets, i.e. Ω-algebras with no operations in Ω
whatsoever. Then there is a unique takeoff V → S where V is any variety.

(b) Let K be the variety given by one nullary operator ε and one identity,
x = (ε). Convince yourself that every K-algebra is the one-element set
{(ε)}. [It is called the “King variety”, if you insist.] Show that there’s a
unique takeoff K → V where V is any variety.

5. Let T1 : V(S1) → V(S2) and T2 : V(S2) → V(S3) be takeoffs of varieties.
Define the composite takeoff T2T1 : V(S1) → V(S3) as follows: For
each ω ∈ Ω3(n), T2T1ω = ϕ(T2ω) where ϕ : FS2(Ω2, {x1, x2, . . . xn}) →
FS1(Ω1, {x1, x2, . . . xn}) is the Ω2-homomorphism sending each xi → xi
[it exists because FS1

(Ω1, {x1, x2, . . . xn}) ∈ V(S2)].

(a) T2T1 is a takeoff from V(S1) to V(S3), and for every A ∈ V(S1), the
derived Ω3-structure given by T2 of A as an Ω2-algebra given by T1’s
derived structure is the same as the derived Ω3-structure of A given by
T2T1.

(b) If T3 : V(S3)→ V(S4) is another takeoff, (T3T2)T1 = T3(T2T1). [Hint :
Exercise 3 may help.]

(c) Define the identity takeoff 1V(S1) : V(S1)→ V(S1) by Tω = (ωx1x2 . . . xn)
for ω ∈ Ω1(n). Then the derived structure for an Ω1-algebra A given by
1V(S1) is simply its original structure.

(d) If T : V(S1)→ V(S2) is any takeoff, then T1V(S1) = T = 1V(S2)T .

6



6. A takeoff T : V(S1)→ V(S2) is said to be an isomorphism [of varieties]
if there exists another takeoff T−1 : V(S2)→ V(S1) [called the inverse of
T ] such that T−1T = 1V(S1) and TT−1 = 1V(S2).

(a) Isomorphism of varieties is an equivalence relation.

(b) The variety of abelian groups is isomorphic to the variety of Z-modules.
[Hint : Show that an abelian group, written additively, has a unique Z-
module structure.]

(c) Let 1 ≤ k ≤ n be fixed positive integers. Suppose V is a variety given
by one n-ary operator ω, and one identity, (ωx1x2 . . . xn) = xk. Then
every set map of V-algebras is a homomorphism, and V is isomorphic to
the variety of sets.

(d) The variety of groups is isomorphic to the variety of pointed affines
[that is, affines with a nullary operator for the base point]. [Hint : Treat
the base point as the group’s identity element.]

(e) A Boolean ring is a ring R satisfying x2 = x for all x ∈ R. Show
that R is commutative and 1 + 1 = 0 in R. Then, show that the takeoff
from Boolean rings to Boolean algebras given by

a ∨ b = a+ b− ab, a ∧ b = ab, 1 = 1, 0 = 0, a′ = 1− a

is an isomorphism with inverse

a+ b = (a ∧ b′) ∨ (a′ ∧ b), ab = a ∧ b, 1 = 1, 0 = 0,−a = a

from the Boolean algebras to the Boolean rings.

(f) Informally, what can you say about isomorphic varieties?

7. An automorphism of a variety is an isomorphism from the variety to
itself.

(a) The automorphisms of a variety form a group under takeoff composi-
tion. [You may assume that they form a set.]

(b) Give examples of automorphisms of order 2 of the variety of monoids,
of groups, of rings, of lattices, and of Boolean algebras. [Hint : If M is a
monoid, define Mop by reversing the operands, a ∗ b = ba.]

8. A takeoff T : V(S1)→ V(S2) is said to be full if every Ω2-homomorphism
of algebras in V(S1) [with derived structure] is an Ω1-homomorphism. For
example, the takeoff from groups to monoids is full, but the takeoff from
rings to rngs is not, because a rng homomorphism of rings need not map
1 to 1.

(a) The composition of full takeoffs is full, and every isomorphism of va-
rieties is full.

(b) If T : V(S1) → V(S2) is a full takeoff and A is an Ω1-algebra, then
(A, 1A) is the universal enveloping A [as an Ω2-algebra with the derived
structure] for T .

(c) Show by example that part (b) may be false if T is not full.
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9. (a) Suppose T1 : V(S1)→ V(S2) and T2 : V(S2)→ V(S3) are takeoffs, and
let A ∈ V(S3). If (U2, i2) is a universal enveloping A for T2, and (U1, i1) is
a universal enveloping U2 for T1, then (U1, i1i2) is a universal enveloping
A for T2T1.

(b) If T1 : V(S1) → V(S2) is a takeoff, then a universal enveloping a free
V(S2)-algebra given by a set X is a free V(S1)-algebra given by X. [Hint :
Apply part (a) with V(S3) the variety of sets.]

(c) Under the takeoff from rings to monoids taking only the multiplication
and 1 of a ring, the universal ring envelopping a monoid M is the direct
sum

∑
m∈M Z with multiplication defined using the monoid operation and

the distributive laws.

(d) Using parts (b) and (c), figure out the free ring given by a set.

10. (a) Consider the takeoff from abelian groups to groups which forgets the
commutativity requirement. The universal abelian group enveloping a
group G is then G/[G,G], where [G,G] is the commutator subgroup of G.

(b) Now consider the takeoff from commutative rings to rings. What’s the
universal commutative ring enveloping a ring R?

11. Let R be a fixed commutative ring, and consider the takeoff from asso-
ciative algebras over R to Lie algebras over R given by [a : b] = ab − ba.
Use the above recipe to find the universal associative algebra enveloping
a Lie algebra L. [Hint : The free associative algebra given by a set is a bit
similar to the free ring given by a set.]

12. Let V(S) be a variety. Define a new variety V(S′) by adding a unary
operator η which must be a homomorphism from the algebra to itself;
that is, (η(ωa1a2 . . . an)) = (ω(ηa1)(ηa2) . . . (ηan)) for ω ∈ Ω(n), ai ∈
A. [This is called a V(S) algebra with operator.] Now consider the
takeoff V(S′) → V(S) which forgets the operator η and takes all other
operators. Show that if A ∈ V(S), the universal V(S′)-algebra enveloping
A is

∐
n∈NA, with η shifting up the operands of the coproduct.

13. Let V(S) be a variety. Define a new variety V(S′) by adding a nullary
operator ε for a base point. [This is called a pointed V(S) algebra.]
Now consider the takeoff V(S′)→ V(S) which forgets the operator ε and
takes all other operators. If A ∈ V(S), describe the universal V(S′)-algebra
enveloping A.

14. Let T : V(S1)→ V(S2) be a takeoff, {Aα} a family of V(S2)-algebras. For
each α, let Uα be a universal Ω1-algebra enveloping Aα. Show that the
universal preserves coproducts:

∐
Uα is a universal Ω1-algebra enveloping∐

Aα. Then determine the map. [Caution:
∐
Uα takes the coproduct in

V(S1), not in V(S2).]
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