
2.1 - Definition and Examples of Categories

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

The first chapter generalized the notion of an algebraic structure, and dealt
with homomorphisms in between them. Now we do something even weirder: we
generalize the notion of a homomorphism, not necessarily between sets!

A category consists of a community of objects and morphisms between them.
It does not have any trivial structure we have previously dealt with. However,
given a category, we can define many things reasonably, and give proofs which
focus on morphisms. It just comes to a challenge that we cannot treat the
objects like sets [until Section 9 comes along].

This is an ubiquitous concept in mathematics. It starts out involving alge-
braic structures, but then changes to entirely different structures, like the ones
in the later chapters. What’s more awkward is that categories have morphisms
of their own [Section 3], and these morphisms have their own morphisms!

To see what morphisms would look like, recall the basic properties of homo-
morphisms of V(S) algebras.

To begin with, the domain and codomain of a homomorphism are intrinsic, even
though surjectification is possible. [For example, the set map {0} → Z sending
0 to 2 is different from the map {0} → R sending 0 to 2.] This is a rule which
prevents any confusion in category theory.

The second thing to realize is that if f : A → B and g : B → C are
homomorphisms, so is gf : A → C [Theorem 1.4(1)]. Reread the statement in
the proof if you don’t remember why.

Next, if f : A → B, g : B → C and h : C → D, then (hg)f = h(gf),
because both send x ∈ A to h(g(f(x))) ∈ D. It is well-known that composition
of functions is associative, no matter what the functions are.

The final thing about homomorphisms is that 1A : A → A is a homomor-
phism [Theorem 1.4(2)], and whenever f : A → B and g : B → A, clearly
f1A = f and 1Ag = g.

Abstracting the properties just gone over:

DEFINITION
A category is a mathematical object C with new structure given by the

following:
(1) ob(C) is a class, whose elements are called the objects of C.
(2) For each A,B ∈ ob(C), homC(A,B) [or hom(A,B) if C is clearly under

discussion] is a set whose elements are called morphisms from A to B. One
writes f : A→ B for f ∈ hom(A,B).

(3) If (A,B) 6= (A′, B′), hom(A,B) and hom(A′, B′) are disjoint.
(4) Whenever f : A → B and g : B → C, the composite function gf is

some morphism A → C. Stated otherwise, for each A,B,C ∈ ob(C), a map
hom(B,C)× hom(A,B)→ hom(A,C) is equipped.
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(5) [associativity] When f : A → B, g : B → C and h : C → D, (hg)f =
h(gf). As usual, we simplify this to hgf .

(6) [identity] For each A ∈ ob(C), there is a morphism 1A : A → A such
that whenever f : A → B and g : B → A, f1A = f and 1Ag = g. 1A is called
the identity morphism on A.

REMARKS Condition (3) is useful, but it is not very necessary. Whatever
sets the hom(A,B)’s are, their elements could be tagged indicating where they
are, making the sets disjoint. And the identity morphism 1A is unique, because
if 1′A : A→ A also satisfies the condition, 1A = 1A1′A = 1′A.

Since this definition is hard to understand, examples would surely help.

EXAMPLES
1. A variety V(S) becomes a category V(S) with ob(V(S)) the class of V(S)

algebras, and hom(A,B) the set of homomorphisms A→ B, where composition
of morphisms is the usual function composition and 1A : A→ A is the identity
map on A. [Note that hom(A,B) may be empty.] In particular, varieties we
know already yield the categories Mon [monoids], Grp [groups], Ab [abelian
groups], Ring [rings], Rng [rngs], Rinv [rings with involution], R−mod [left
R-modules with R a given ring], M−act [left M -actions], and lots more ... and,
of course, Set, the category of sets.

2. In fact, using Exercise 5 of Section 1.11, one can form the category
of all varieties Var where the morphisms are takeoffs. This category is quite
complicated, because of the possible difficulty in verifying the axioms.

3. The integral domains form a category Dom where homomorphisms are
the usual ring homomorphisms. Note, however, that the integral domains don’t
form a variety.

4. The fields form a category Field where homomorphisms are the usual
ring homomorphisms. Note, by the way, that all of the homomorphisms are
injective! [Exercise 1] Similarly, if F is a particular field, one could form the
category F -Ext of extension fields of F , where only homomorphisms that send
every element of F to itself are admitted.

5. A category C is said to be discrete provided hom(A,B) = ∅ when A 6= B
and hom(A,A) = {1A}. Discrete categories can be identified purely with their
objects.

6. Notice that if A is an object in C, hom(A,A) is a monoid with the categor-
ical structure. Every monoid can be found this way: let M be a monoid. Define
M by saying that ob(M) = {A}, and hom(A,A) = M , where composition of
morphisms agree with the binary operation in M and the identity morphism is
1 ∈M . Then the validity of the axioms is clear.

7. Let S be a set with a preorder [i.e. reflexive and transitive] relation ≤.
Define a category S by ob(S) = S, and when a, b ∈ S, hom(a, b) has exactly
one morphism if a ≤ b, otherwise hom(a, b) = ∅. Then S is a category with
composition and identity maps unique determined, and is said to be a category
given by a preorder.
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8. [New categories from old] Let C and D be arbitrary categories. Define a
new category C ×D by specifying that ob(C ×D) is the class of pairs (A,B)
with A ∈ ob(C) and B ∈ ob(D), and homC×D((A,B), (C,D)) = homC(A,C)×
homD(B,D), the set of pairs of the form (f, g) where f : A→ C and g : B → D.
Define (g, g1)(f, f1) = (gf, g1f1) when possible and 1(A,B) = (1A, 1B). This is
easily seen to be a category. It is called the product category of C and D.

9. If C is an arbitrary category, the objects in C→ are the morphisms in
C, and whenever f : A → B and g : C → D in C, hom(f, g) is the set of pairs
(h, k) with h : A→ C and k : B → D such that the diagram

A
h
> C

B

f

∨
k
> D

g

∨

is commutative. The hom sets may not be disjoint, but as I said, you can
make them disjoint with the use of tags. If (h1, k1)(h2, k2) = (h1h2, k1k2) when
possible and 1(A,B) = (1A, 1B), this is also a category, but a bit more interesting.

10. Let C be an arbitrary category, and define Cop as follows: ob(Cop) =
ob(C); whenever A,B ∈ ob(C), homCop(A,B) = homC(B,A); if f : A → B
and g : B → C in Cop, define gf : A → C to be fg as given by C, and 1A
in Cop the same as that in C. This is clearly a category; it is called the dual
category of C.

11. Let A be an arbitrary object of a category C. Define C/A as follows:
ob(C/A) is the class of pairs of the form (B, f) where B ∈ ob(C) and f : B →
A. For (B, f), (C, g) ∈ ob(C/A), hom((B, f), (C, g)) is the set of morphisms
u : B → C such that f = gu, that is,

B

A

f

>

C

u
∨

g

>

is commutative. Tag the morphisms to make the hom sets disjoint. Then it is
easy to see that C/A becomes a category by defining composition of morphisms
and identity morphisms to agree with C. C/A is called the category of objects
in C below A.

12. Likewise, define C\A by agreeing that ob(C\A) is the class of pairs of
the form (B, f) where f : A → B, and hom((B, f), (C, g)) is the set of mor-
phisms u : B → C such that uf = g. C\A is then a category, called the
category of objects in C above A.

Note that ob(C) is a class. It may not be a set, as we now see.
S = ob(Set) is supposed to be the class of all sets. If S were a set, we could

legally form X = {x ∈ S | x /∈ x} [since every x ∈ S is a set, a ∈ x is a defined
statement]. But then X ∈ X if and only if X /∈ X, so this is an impossible
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situation. Hence, S cannot be a set without resulting in paradoxes. So S is said
to be a proper class.

In rare occasions, such as in examples 6 and 7 above, ob(C) is a set. If C
is a category such that ob(C) is a set, C is said to be a small category.

An isomorphism in a category is exactly what one would expect: f : A→
B is an isomorphism provided that there exists g : B → A such that gf = 1A
and fg = 1B . In that case, g is unique, and is denoted f−1.

Subcategories

Remarkably, it already follows that isomorphisms compose into isomorphisms.
If f : A → B is an isomorphism with inverse f−1 and g : B → C is an iso-
morphism with inverse g−1, then gf : A → C is an isomorphism with inverse
f−1g−1 : C → A. And of course, 1A is an isomorphism. This illustrates the
following definition:

DEFINITION
A category D is said to be a subcategory of a category C provided that:
(1) ob(D) is a subclass of ob(C).
(2) Whenever A,B ∈ ob(D), homD(A,B) is a subset of homC(A,B).
(3) Whenever f : A → B and g : B → C in D, the composite gf : A → C

given by C is in homD(A,C) and is the composite gf given by D.
(4) For each A ∈ D, C’s identity morphism 1A is in homD(A,A) as D’s

identity morphism.
If also homD(A,B) = homC(A,B) for all A,B ∈ ob(D), D is said to be a

full subcategory of C.

Notice that subcategories of C can be identified purely in terms of their objects
and morphisms, because C already gives the rest of the structure. And full
subcategories can be identified from just the objects! They hypothetically leave
all morphisms that they can.

EXAMPLES
1. Since every group is a monoid, no two groups can be the same monoid

and every group homomorphism is a homomorphism of the monoids, Grp is
a subcategory of Mon. However, Mon is not a subcategory of Set, because
a set can be many different monoids. Mon is a subcategory of Semgrp [the
semigroups] because a semigroup can’t have more than one identity element.

2. Every monoid homomorphism of groups is automatically a group homo-
morphism, so Grp is a full subcategory of Mon. However, there exist maps of
monoids preserving multiplication which don’t map 1 to 1, hence Mon is not a
full subcategory of Semgrp.

3. Since a rng can be at most one ring with the same addition and multipli-
cation, Ring is a subcategory of Rng.
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4. Since the isomorphisms in a category C are closed under defined compo-
sition and involve all identity morphisms, one can form a subcategory of C by
keeping precisely the isomorphisms.

EXERCISES

1. If F and G are fields and f : F → G is a homomorphism, then f is
injective. [Hint : What are the ideals in a field?]

2. (a) Suppose V(S1) and V(S2) are varieties, where every operator for V(S2)
is in V(S1) and every identity in S2 is in S1. Then every V(S1) algebra is
also a V(S2) algebra, and homomorphisms between V(S1) algebras are also
homomorphisms with V(S2)’s structure. Assume no two V(S1) algebras
can have the same V(S2) structure. Show that V(S1) is a subcategory of
V(S2).

(b) If V(S1) and V(S2) have exactly the same operators, then V(S1) is a
full subcategory of V(S2).

(c) Show by example that V(S1) may have operators that V(S2) doesn’t,
but V(S1) is still a full subcategory of V(S2).

3. (a) An object I in a category C is said to be initial provided that for every
object A, there is exactly one morphism in hom(I, A). For example, IS(Ω)
is initial in V(S) [see Exercise 10 of Section 1.9] and the King variety is
initial in Var [see Exercise 4 of Section 1.11]. Show that any two initial
objects in a category are isomorphic.

(b) An object T is said to be terminal provided that for every object
A, there is exactly one morphism in hom(A, T ). For example, T (Ω) is
terminal in V(S), and the variety of sets is terminal in Var. Explain why
any two terminal objects in a category are isomorphic.

(c) Whenever A is an object in a category C, C/A has a terminal object,
and C\A has an initial object. [Hint : Try (A, 1A).]

(d) A zero object in a category C is an object which is both initial
and terminal. If C has a zero object, show that one can assign each pair
(A,B) of objects in C a morphism 0A,B ∈ hom(A,B) such that 0D,Bg =
0A,B = f0A,C when they are defined. In particular, show hom(A,B) is
never empty for any objects A,B ∈ ob(C).

4. (a) C is a full subcategory for C, for every category C.

(b) If E is a subcategory of D and D is a subcategory of C, then E is a
subcategory of C.

(c) Prove part (b) with “subcategory” replaced with “full subcategory.”

5. A category C is discrete if and only if every subcategory of C is a full
subcategory.

6. Is Ring is a full subcategory of Rng?
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7. (a) Let V(S) be a variety, and form a category V(S)−sub as follows: the
objects are the pairs of the form (A,A1) with A ∈ V(S), A1 a subalgebra
of A, and hom((A,A1), (B,B1)) consists of homomorphisms f : A → B
such that f(A1) ⊆ B1. Verify that this data forms a category with the
usual composition of morphisms and identity morphisms.

(b) Likewise, define V(S)−con as follows: the objects are the pairs of
the form (A,Φ) with A ∈ V(S), Φ a congruence relation on A, and
hom((A,Φ), (B,Θ)) consists of homomorphisms f : A → B such that
whenever aΦb in A, f(a)Θf(b) in B. Then V(S)−con is a category.

8. A small category C in which all morphisms are isomorphisms is called a
groupoid. In this exercise we establish a non-categorial definition of a
groupoid. We see it as a set G equipped with the following structure:

(1) Whenever a, b ∈ G, ab is either some element of G or is undefined.
[This is a partial operator.]

(2) Whenever a ∈ G, a−1 is some element of G.

(3) [associativity] Whenever ab and bc are defined in G, then (ab)c and
a(bc) are defined and (ab)c = a(bc).

(4) [inverse] aa−1 and a−1a are always defined for a ∈ G.

(5) [identity] Whenever ab is defined in G, abb−1 = a and a−1ab = b. [Note
that rules (3) and (4) already show that those expressions are defined and
unambiguous.]

(a) If C is a groupoid, consider G =
⊎

A,B∈ob(C) hom(A,B). If a : A→ B

and b : A′ → B′ are in G, define ab to be ab : A′ → B as given in C if
A = B′, and undefined if A 6= B′. Then define a−1 to be a−1 : B → A as
given in C. Verify rules (3), (4), (5) for G.

Now suppose G is any set equipped with structure satisfying the five rules
above. Show that for a, b ∈ G:

(b) (a−1)−1 = a. [Hint : Why is (a−1)−1a−1a defined? Change it in two
ways.]

(c) If ab is defined, then b−1a−1 is defined and b−1a−1 = (ab)−1. [Hint :
b−1a−1ab and ab(ab)−1 are defined [why?].]

(d) For a, b ∈ G, define aΦb to mean that ab−1 is defined. Then Φ is an
equivalence relation on G.

(e) If a ∈ G, T (a) = {x ∈ G | xa is defined} is an equivalence class of Φ,
which may be different from a’s. [Yes, this means it must be nonempty.]

(f) Define ob(C) = G/Φ, the set of equivalence classes, and for A,B ∈
G/Φ, hom(A,B) = {a ∈ A | T (a) = B}. If a ∈ hom(A,B) and b ∈
hom(B,C), ba ∈ hom(A,C). Also, a−1a is the same for all a ∈ A, and
is an identity morphism in hom(A,A). Conclude that C is a groupoid in
the categorical sense.
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(g) Take a look at the translations for a groupoid in (a) and (f). If you go
through one of them and then the other, must you end up with the same
thing you started with?
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2.2 - Monic and Epic Morphisms

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

The injectivity and surjectivity of V(S)-algebras was quite important. This
importance carries over to category theory. Unfortunately, for morphisms which
don’t go from sets to sets, injectivity and surjectivity can hardly be defined.
Let’s explore the V(S)-algebras, once again.

Suppose f : A → B is an injective homomorphism in V(S). If C ∈ V(S),
g, h : C → A and fg = fh, then for all a ∈ A, fg(a) = fh(a). Thus f(g(a)) =
f(h(a)), which implies g(a) = h(a) since f is injective. Therefore, g = h.

But what if f isn’t injective? Let C = ker f = {(a, b) ∈ A×A | f(a) = f(b)}.
Then C ∈ V(S). Define g, h : C → A by g(a, b) = a and h(a, b) = b. For all
(a, b) ∈ C, f(a) = f(b) by definition, so that fg(a, b) = fh(a, b). Therefore,
fg = fh. However, since f is not injective, there exist a 6= b in A such that
f(a) = f(b). Furthermore, (a, b) ∈ C and g(a, b) 6= h(a, b), so that g 6= h.

We have shown

A homomorphism f : A→ B in V(S) is injective if and only if fg = fh
always implies g = h for homomorphisms g, h : C → A.

This defines injectivity of a homomorphism using purely maps, leading to the
following definition and theorem.

DEFINITION
If C is a category, and f : A→ B in C, f is said to be monic provided that

whenever fg = fh in C, g = h.

THEOREM 2.1a A homomorphism in V(S) is monic if and only if it’s in-
jective.

How how would one define surjectivity? There is a bit of less luck here. Suppose
f : A→ B is surjective in V(S). If C ∈ V(S), g, h : B → C and gf = hf , then
for all b ∈ B, b = f(a) for some a ∈ A since f is surjective, and g(b) = gf(a) =
hf(a) = h(b). Hence, g = h.

But in rare cases, we could still have gf = hf =⇒ g = h when f is
not surjective. Consider the canonical monomorphism of rings f : Z ↪→ Q. If
g : Q → R and h : Q → R are ring homomorphisms such that gf = hf , then
g|Z = h|Z. Exercise 1 shows that g = h follows. So this property of maps
strictly contains surjectivity:

DEFINITION
If C is a category, and f : A → B in C, f is said to be epic provided that

whenever gf = hf in C, g = h.
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The preceding example shows that the canonical monomorphism ι : Z → Q in
Ring is epic but not surjective, so we have:

THEOREM 2.1b A surjective homomorphism in V(S) is epic, but not con-
versely.

A complete classification of epic homomorphisms in V(S) is found in Exercise
2.

Theorem 2.1a may be false when the category consists of Ω-algebras but
isn’t a variety. To see an example, define a divisible abelian group to be an
abelian group G [written additively] such that for all a ∈ G, 0 6= n ∈ Z, there
exists b ∈ G with a = nb. Thus you can divide by any nonzero integer in G.

Let Ab− div be the full subcategory of Ab consisting of the divisible
abelian groups. Clearly Q and Q/Z are divisible; let f : Q→ Q/Z be the canon-
ical epimorphism. We claim that f is monic, even though it is not injective:
suppose G is a divisible abelian group and g, h : G → Q are homomorphisms
with fg = fh. Then g − h : G → Q is a homomorphism and f(g − h) = 0,
implying that im(g − h) ⊆ ker f = Z. Evidently a homomorphic image of a
divisible abelian group is divisible, so im(g − h) is divisible [since G is]. The
only subgroup of Z which is divisible is 0, and hence, g− h is the zero map and
g = h. Therefore, f is monic.

The conclusion is that if categories consist of sets and maps, monicness and
epicness are only approximations of injectivity and surjectivity.

Now for a few basic properties about morphisms in an arbitrary category.
For example, we know that if f : A → B and g : B → C are both injective in
Set, gf is injective. The same is true for monic morphisms, as we now see.

THEOREM 2.2 Let C be a category and f : A → B, g : B → C morphisms
in C.

(1) If f and g are monic, gf is monic.
(2) If gf is monic, then f is monic.
(3) If f and g are epic, gf is epic.
(4) If gf is epic, then g is epic.

Proof of Theorem 2.2. (1) If gfx = gfy with x, y : D → A, then fx = fy since
g is monic, hence x = y since f is monic.

(2) If fx = fy with y : D → A, then gfx = gfy, so that x = y since gf is
monic.

(3) and (4) have essentially the same proof with the arrows reversed. �

We now define subobjects and quotient objects of an arbitrary object in a cat-
egory.

Fix A ∈ ob(C). Consider the class of all monic morphisms from any object
in C to A. If f and g are such morphisms, define f ≤ g provided that f = gk
for some k [which is theoretically monic]. Then evidentiy ≤ is reflexive and
transitive. Now define f ≡ g provided that f ≤ g and g ≤ f ; equivalently,
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f = gk for some isomorphism k. ≡ is an equivalence relation, and its equivalence
classes are the subobjects of A.

Furthermore, if f ≡ f ′ and g ≡ g′, then f ≤ g if and only if f ′ ≤ g′. Thus
≤ is actually a partial order on the subobjects of A.

The special case where C = V(S) considers all injective homomorphisms
into A. If f and g are such homomorphisms, f ≤ g if and only if im f ⊆ im g.
Thus, f ≡ g if and only if they have the same image. Since the possible images of
injective homomorphisms into A are the subalgebras of A, the above definition
makes sense.

Now consider the class of all epic morphisms from A to any object in C. If
f and g are such morphisms, define f ≥ g to mean f = kg for some k, and
f ≡ g to mean f ≥ g and g ≥ f . Once again, ≡ is an equivalence relation, its
equivalence classes are the quotient objects of A, and ≥ is a partial order on
them.

If f and g are surjective homomorphisms from A in V(S), then f ≥ g if
and only if ker f ⊇ ker g, and f ≡ g if and only if they have the same kernel.
Since the possible kernels are the congruence relations on A, the above definition
would make sense, except for the trap that epic homomorphisms need not be
surjective. Because of this, the class of quotient objects of A as defined above
may be larger than the actual class of quotient algebras.

CAUTION In universal algebra, people refer to injective homomorphisms as
monomorphisms, and surjective homomorphisms as epimorphisms. In cat-
egory theory, however, a “monomorphism” refers to a monic morphism and an
“epimorphism” refers to an epic morphism. You need to watch out which defi-
nitions are being used when, because they are not the same!

EXERCISES

1. Suppose g : Q → R and h : Q → R are ring homomorphisms with
g|Z = h|Z.

(a) For each n 6= 0 in Z, g(n) is a two-sided unit in R. [Hint : Multiply by
g(1/n) on both sides.]

(b) For each n 6= 0 in Z, g(1/n) = h(1/n).

(c) g = h. Hence, the canonical monomorphism Z ↪→ Q, though not
surjective, is epic.

2. (UNIVERSAL ALGEBRA) If A and B are V(S)-algebras and g, h : A→
B are homomorphisms, let K = {a ∈ A | g(a) = h(a)}. We already know
that K is a subalgebra of A [Exercise 10(a) of Section 1.3]. K is called
the difference kernel of g and h.

(a) If f : C → A is a homomorphism, then gf = hf if and only if
f(C) ⊆ K.

(b) If B is a subalgebra of A, then B is said to be nice provided that
there exists an V(S)-algebra C and homomorphisms g, h : A → C with
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difference kernel B. Show that A is nice in A, and the intersection of any
batch of nice subalgebras of A is nice. [Hint : Products.] Conclude that
Theorem 1.3 can be applied to define the nice subalgebra generated by a
set.

(c) A homomorphism f : A → B is epic if and only if B is the nice
subalgebra of B generated by f(A).

(d) Every submodule of an R-module is nice. Conclude that epic mor-
phisms are surjective in R−mod.

(e) If R is a ring and S is a nice subring of R, then whenever u ∈ S is a
unit in R, then u−1 ∈ S. Conclude that Z is not a nice subring of Q.

3. (UNIVERSAL ALGEBRA) If A and B are V(S)-algebras and g, h : A→
B are homomorphisms, let Θ be the congruence relation on B generated
by {(f(a), g(a)) | a ∈ A}. Θ is called the difference image of f and g.

(a) If f : B → C is a homomorphism, then fg = fh if and only if
Θ ⊆ ker f .

(b) For every congruence relation Φ on B, there exists an V(S)-algebra A
and homomorphisms g, h : A→ B with difference image Φ. Explain why
this implies that monics are injective in V(S).

4. In Grp, epic morphisms are surjective. [Hint : Suppose f : G → H is a
group homomorphism which is not surjective. If I = f(G) is normal in
H, the proof that f is not epic should be easy. Otherwise, [H : I] ≥ 3
[why?] Let S(H) be the group of permutations of the set H and define
g : H → S(H) by sending every a ∈ H to aL ∈ S(H) sending x → ax.
Show that there exists p ∈ S(H) which commutes with every aL with
a ∈ I, but fails to commute with some aL with a ∈ H − I. Then, if
h : H → S(H) is defined by h(a) = paLp

−1, show that gf = hf but
g 6= h.]

5. If f : A→ B and g : B → A are morphisms in C such that gf = 1A, f is
said to be a section of g and g is said to be a retraction of f . Hence, a
morphism is a section if and only if it has a retraction, and a morphism
is a retraction if and only if it has a section.

(a) Sections are monic and retractions are epic in C, but not conversely.

(b) Show by example that a morphism in C may have more than one
section, or more than one retraction.

(c) If f has both a section and a retraction, then f is an isomorphism,
and the conditions in (b) can’t hold.

(d) Comment on how this links to universal algebra. [Hint : See Exercise
10 of Section 1.5]
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2.3 - Functors and Natural Transformations

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Functors are structure-preserving maps of categories. However, since categories
are more than just classes of objects, it appears that we haven’t really seen a
map of categories before. However, we have; consider takeoffs from Section 1.11,
but this time regard V(S1) and V(S2) as categories.

A takeoff gives every V(S1)-algebra a V(S2)-algebra structure in such a way
that all V(S1)-homomorphisms preserve the V(S2)-structure. One can think
about this as assigning a V(S1)-algebra a V(S2)-algebra and every homomor-
phism of V(S1)-algebras a homomorphism of the corresponding V(S2)-algebras.
The composition of maps and identity maps are obviously preserved by this.

Abstracting the above information, we have the following definition:

DEFINITION
If C and D are categories, a [covariant] functor from C to D is a math-

ematical object F such that:
(1) For each A ∈ ob(C), FA is some object of D.
(2) For each f : A→ B in C, F (f) is some morphism FA→ FB of D.
(3) F (gf) = F (g)F (f) whenever gf is defined in C.
(4) F (1A) = 1FA for all A ∈ ob(C).

EXAMPLES
1. A takeoff T : V(S1)→ V(S2) of varieties becomes a functor F : V(S1)→

V(S2) sending every V(S1)-algebra to itself as a V(S2)-algebra with the derived
structure, and every homomorphism of V(S1)-algebras to itself. In particular,
for any variety V(S), we have the forgetful functor F : V(S)→ Set sending
every algebra to its underlying set, and every homomorphism to itself as a set
map.

2. If M and N are monoids viewed as one-object categories [Example 6
of Section 1], a functor M → N is a monoid homomorphism. If S and T are
preordered sets viewed as categories with at most one morphism in every hom
set [Example 7 of Section 1], a functor S→ T is an order-preserving map.

3. Let Poset be the category consisting of partially ordered sets and order-
preserving maps. Evidently a homomorphism f : A → B of V(S)-algebras
induces an order-preserving map from Sub A to Sub B. Hence we have a functor
Sub : V(S)→ Poset sending every V(S)-algebra to its subalgebra lattice.

4. If D is a subcategory of C, one can form the injection functor I : D→ C
sending every object and morphism in D to itself in C. Thus IA = A and
I(f) = f for A ∈ ob(D), f ∈ homD(A,B). The special case when D = C is the
identity functor 1C.

5. Fix an object B ∈ D, then we have the constant functor F : C → D
defined by FA = B for all A ∈ ob(C) and F (f) = 1B for all f : A→ A′ in C.

6. If C is a discrete category, a functor C → D simply assigns each object
of C an object of D.
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7. Define a functor U : Ring → Grp as follows: For each ring R, UR is its
group of units. Since every ring homomorphism f : R→ S sends units to units,
it restricts to a group homomorphism U(f) : UR→ US.

8. For each ring R, one can form the polynomial ring R[x] by adjoining a
symbol x and agreeing that xr = rx for all r ∈ R. Then every element of R[x]
is of the form anx

n + an−1x
n−1 + · · ·+ a1x+ a0 with the ai’s in R. Evidently

a homomorphism f : R→ S induces one f : R[x]→ S[x] by defining

f(anx
n + · · ·+ a1x+ a0) = f(an)xn + · · ·+ f(a1)x+ f(a0)

This is a functor Ring → Ring, sending every ring R to the polynomial ring
R[x] and every homomorphism f to f .

9. Another functor Mn : Ring → Ring sends each ring R to the matrix
ring Mn(R) and each homomorphism f : R → S to the homomorphism f̃ :
Mn(R)→Mn(S) defined by

f̃(


r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
. . .

...
rn1 rn2 . . . rnn

) =


f(r11) f(r12) . . . f(r1n)
f(r21) f(r22) . . . f(r2n)

...
...

. . .
...

f(rn1) f(rn2) . . . f(rnn)


10. Let M be a monoid M , regarded as a category with one object [Example

6 of Section 1]. Then a functor M → Set is an M -action. This is because M
has only one object, so it is assigned by the functor to only one set. In fact, a
functor M→ V(S) is a V(S)-representation of M .

11. Let R be a fixed ring, n a fixed positive integer. Whenever M is an R-
module, Mn becomes a left module over the matrix ring Mn(R) when defined
as follows.

r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
. . .

...
rn1 rn2 . . . rnn



a1
a2
...
an

 =


r11a1 + r12a2 + · · ·+ r1nan
r21a1 + r22a2 + · · ·+ r2nan

...
rn1a1 + rn2a2 + · · ·+ rnnan


And for every R-module homomorphism f : M → N , the map fn : Mn → Nn

sending


a1
a2
...
an

→

f(a1)
f(a2)

...
f(an)

 is an Mn(R)-module homomorphism. Consequently,

this defines a functor R−mod→Mn(R)−mod.
12. Example 1 shows that the takeoff T : V(S1)→ V(S2) of varieties becomes

a functor F : V(S1)→ V(S2). We proceed to construct a functor the other way
G : V(S2)→ V(S1). For each A ∈ V(S2), there is a unique [up to isomorphism]
universal V(S1)-algebra (UA, iA) enveloping B for the takeoff, by Theorems 1.28
and 1.29. Define GA = UA. For f : A → B in G, to define G(f) : UA → UB ,
note that iBf is an Ω2-homomorphism A→ UB . Therefore there exists a unique
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Ω1-homomorphism h : UA → UB such that iBf = hiA; define G(f) = h. Then
G(f)iA = iBf for all f : A→ B in V(S2), that is,

A
f
> B

UA

iA
∨

G(f)
> UB

iB
∨

is commutative.
Now suppose f : A→ B and g : B → C in V(S2). Then G(gf) is the unique

morphism GA→ GC in C satisfying G(gf)iA = iCgf . However, G(g)G(f) also
satisfies this statement, because the commutativity of the squares in

A
f
> B

g
> C

UA

iA
∨

G(f)
> UB

iB
∨

G(g)
> UC

iC
∨

implies that

A
gf

> C

UA

iA
∨

G(g)G(f)
> UB

iC
∨

is commutative. Therefore, G(gf) = G(g)G(f) by uniqueness. Likewise, for
A ∈ V(S2), G(1A) is the unique morphism UA → UA satisfyingG(1A)iA = iA1A.
But obviously 1GA satisfies that statement; whence G(1A) = 1GA. Therefore, G
is a functor. It is a left adjoint functor of F , and that will be studied in Section
8.

The special case where V(S2) is the variety of sets induces the free-algebra
functor G : Set→ V(S), sending every set X to FS(Ω, X), and every set map
f : X → Y the unique homomorphism FS(Ω, X) → FS(Ω, Y ) which extends
iY f : X → FS(Ω, Y ).

13. A functor in two variables refers to a functor from a product category.
For example, if C and D are categories, one cn form the projection functor
P1 : C ×D → C by P1(A,B) = A, P1(f, g) = f . The other projection P2 is
defined similarly.

14. The diagonal functor ∆ : C→ C×C sends A→ (A,A) and f → (f, f)
for f : A→ A′ in C.

A functor F is said to be faithful provided for all A,B ∈ ob(C), the map
hom(A,B) → hom(FA,FB) sending f → F (f) is injective. In other words,
F (f) = F (g) for f, g : A→ B imply f = g. But be careful; this doesn’t mean F
is an injective map on the objects. For example, the the functor in Example 1 is
faithful, but not necessarily injective on the objects. Example 3 is both faithful
and injective on the objects. Example 13 is not faithful though.
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A functor F is said to be full provided that for all A,B ∈ ob(C), the map
hom(A,B) → hom(FA,FB) sending f → F (f) is surjective. In other words,
every morphism FA→ FB is of the form F (f) with f : A→ B. Take caution
again: this doesn’t mean F is a surjective map on the objects. The functor
given by a takeoff [Example 1] is full if and only if the takeoff is full in the sense
of Section 1.11, Exercise 8. Also, if D is a subcategory of C, then the injection
functor D→ C is full if and only if D is a full subcategory, which explains the
terminology.

If C and D are categories, a contravariant functor from C to D is a functor
from Cop to D. [Cop is defined in Example 10 of Section 1.] Specifically, it’s an
object F such that:

(1) For each A ∈ ob(C), FA is some object of D.
(2) For each f : A→ B in C, F (f) is some morphism FB → FA of D.
(3) F (gf) = F (f)F (g) whenever gf is defined in C.
(4) F (1A) = 1FA for all A ∈ ob(C).
Statement (2), for example, is understood in the sense that f ∈ homCop(B,A).
There are many kinds of functors which reverse the arrows like these, seen

in the following examples. To avoid confusion, the plain word “functor” will
always mean “covariant functor”.

EXAMPLES
1. If all morphisms in C are isomorphisms, one can form a contravariant

functor Inv : C → C sending every object to itself and every morphism to its
inverse. The conditions are readily verified. It is called the inversion functor.

2. If M and N are monoids viewed as one-object categories, a contravariant
functor M → N is a monoid antihomomorphism. If S and T are preordered
sets viewed as categories with at most one morphism in every hom set, a con-
travariant functor S→ T is an order-reversing map.

3. Define a contravariant functor P : Set → Set as follows: For each
A ∈ ob(Set), PA is the power set P(A), and for each set map f : A → B,
P(f) : P(B)→ P(A) sends every X ⊆ B to its preimage f−1(X). Elementary
set theory shows that (gf)−1(X) = f−1(g−1(X)) when they are defined and
1−1A (X) = X. Therefore, P is a contravariant functor.

In fact, since the preimage map is a Boolean algebra homomorphism [check
this!] one could take the category of Boolean algebras as the codomain of P,
instead of Set.

4. Let M be a fixed monoid. We define a contravariant functor D :
M−act→ act−M as follows. For each leftM -actionX, defineX∗ = hom(X,M),
the set of M -action homomorphisms from X to M [with the obvious M -action
structure]. To make X∗ into a right M -action, take each ϕ ∈ X∗,m ∈ M .
Define ϕm : X → M by ϕm(x) = ϕ(x)m with x ∈ X. [This uses the monoid
multiplication in M .] It is then straightforward that X∗ is a right M -action. It
is called the dual of the left M -action X.

Now suppose f : X → Y is a homomorphism of M -actions. Define the
transposed map f∗ : Y ∗ → X∗ by f∗(ϕ) = ϕf with ϕ ∈ Y ∗. We claim that
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f∗ is a homomorphism; for ϕ ∈ Y ∗,m ∈M,x ∈ X,

f∗(ϕm)(x) = (ϕm)(f(x)) = ϕ(f(x))m = f∗(ϕ)(x)m = (f∗(ϕ)m)(x)

Therefore, f∗(ϕm) = f∗(ϕ)m. If one defines DX = X∗, D(f) = f∗, it is clear
that D is a contravariant functor. It is called the dual functor.

One can likewise define a dual functor from act−M to M−act. The details
are left to the reader.

5. If R is a fixed ring, the same details from the previous example establish
the dual functors D : R−mod → mod−R and D : mod−R → R−mod:
for every R-module M , let M∗ = hom(M,R), and for every homomorphism
f : M → N , define f∗ : N∗ → M∗ by f∗(ϕ) = ϕf . But this time, one must
take addition into account. Then assign DM = M∗, D(f) = f∗.

Do the categories form a category?

If F : C→ D and G : D→ E are functors, one defines the composite functor
GF : C → E by (GF )A = G(FA) for A ∈ ob(C), (GF )(f) = G(F (f)) for
f : A→ B in C. Evidently this is a functor. Likewise, if F or G is contravariant,
then GF can be defined this way: GF is covariant if F and G are both covariant
or both contravariant; GF is contravariant if one of F,G is covariant and the
other contravariant.

It is clear that (HG)F = H(GF ) when the compositions are defined, and
when F : C→ D, F1C = F = 1DF . And certainly the domain and codomain of
a functor are intrinsic. Doesn’t this mean that there’s a category whose objects
are categories and whose morphisms are covariant functors between categories?
They satisfy everything in the definition, don’t they? But isn’t it a bit fishy
that one of the categories is to be made up of all of them? Well, the question is
controversial. Some argue that the answer is “no”:

(1) In the definition of a category, we said hom(A,B) has to be a set. How-
ever, the class of functors from C to D need not be a set.

(2) Just like a batch of sets doesn’t necessarily form a set, a batch of classes
— such as categories — might not be able to form a class. What they form
would be a “conglomerate” at best.

(3) One would be able to form the full subcategory of categories that don’t
contain themselves as objects. This category contains itself as an object if and
only if it doesn’t, causing a paradox.

We shall be bold as to disagree with all those arguments [for example, (3)
doesn’t work because set-builder notation can’t be used on a proper class]. Thus
we assume that the category of all categories can be formed, and we call it Cat.
Meow if you find this cute!

Natural Transformations

If you’re overburdened by the fact that categories [whose role is to hold mor-
phisms] have morphisms of their own [the functors], prepare to know that func-
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tors have their own morphisms as well! These morphisms, called natural trans-
formations, actually have the slightest bit of information in their hands. If
F,G : C→ D are functors, a natural transformation from F to G assigns each
object A in C a morphism FA→ GA such that the morphisms have the “same
state of mind” and are therefore compatible with where F and G send mor-
phisms. This is formalized in the definition:

DEFINITION
Let C and D be categories, F,G : C → D functors. A natural transfor-

mation from F to G is a mathematical object η assigning each A ∈ ob(C) to a
morphism ηA ∈ homD(FA,GA) such that for all f : A→ B in C, the diagram

FA
ηA
> GA

FB

F (f)

∨
ηB
> GB

G(f)

∨

is commutative. If every ηA is an isomorphism, η is called a natural isomor-
phism.

EXAMPLES
1. Let T : Ring→Mon be the takeoff from rings to monoids, regarding the

multiplication and forgetting the addition. Then, let U : Ring →Mon be the
functor of Example 6 — since groups are monoids, we can change the codomain
this way! For each ring R, TR is the multiplicative monoid of R, whereas UR is
the group of units of R. It turns out that UR is solely the group of units of the
monoid TR, and one can consider the canonical monomorphism ηR : UR ↪→ TR
in Mon. It is straightforward to see that if ηR is defined that way for every ring
R, η is a natural transformation from U to T .

2. Let T : V(S1)→ V(S2) be a takeoff of varieties, and F : V(S1)→ V(S2),
G : V(S2)→ V(S1) be the functors in Examples 1 and 12. For each A ∈ V(S2),
GA is the universal V(S1) algebra enveloping A, let iA : A→ GA be the V(S2)
map. Then iA is really a morphism from A to FGA because it regards the
V(S1) algebra GA with the derived structure. The statement G(f)iA = iBf ,
which is really FG(f)iA = iBf , says that A → iA is a natural transformation
from 1V(S2) to FG.

3. Fix a monoid M , and recall the dual functors D : M−act→ act−M and
act−M → M−act. Composing them yields the double dual functor D2 :
M−act→M−act. It sends each M -action X to X∗∗ = hom(hom(X,M),M).
For each X, define ηX : X → X∗∗ by agreeing that ηX(x) for each x ∈ X is the
map hom(X,M) → M sending ϕ → ϕ(x). Thus ηX(x)(ϕ) = ϕ(x). We claim
that η is a natural transformation from 1M−act ⇒ D2.

First we must show that ηX has a good target in the sense that ηX(x) is
actually a homomorphism of right M -actions. To do this, we need to show that
ηX(x)(ϕm) = ηX(x)(ϕ)m. Well, ηX(x)(ϕm) = ϕm(x) = ϕ(x)m (by definition
of ϕm) = ηX(x)(ϕ)m.
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Next we show that each ηX is a homomorphism of left M -actions: For all
x ∈ X,m ∈M,ϕ ∈ X∗, ηX(mx)(ϕ) = ϕ(mx) = mϕ(x) = mηX(x)(ϕ), since ϕ ∈
hom(X,M) is a left M -action homomorphism. Therefore, ηX(mx) = mηX(x).

Finally we claim that η is a natural transformation from 1M−act to D2.
Let f : X → Y be any M -action homomorphism. Then f∗ : Y ∗ → X∗ is
given by f∗(ϕ) = ϕf , and f∗∗ : X∗∗ → Y ∗∗ is given by f∗∗(ψ) = ψf∗. Thus
f∗∗(ψ)(ϕ) = ψf∗(ϕ) = ψ(f∗(ϕ)) = ψ(ϕf). To show that

X
ηX
> X∗∗

Y

f

∨
ηY
> Y ∗∗

f∗∗

∨

is commutative, we work as follows:

f∗∗(ηX(x))(ϕ) = ηX(x)(ϕf) = ϕf(x) = ϕ(f(x))

ηY f(x)(ϕ) = ηY (f(x))(ϕ) = ϕ(f(x))

Therefore, f∗∗(ηX(x))(ϕ) = ηY (f(x))(ϕ) for all x ∈ X,ϕ ∈ Y ∗. Hence f∗∗(ηX(x)) =
ηY (f(x)) for all x, and f∗∗ηX = ηY f . Therefore, η is a natural transformation.

The foregoing can be done with modules as well as monoid actions.

If F,G : C → D are contravariant functors, one can still define a natural
transformation from F to G. This time, it’s an assignment A → ηA with
ηA ∈ homD(FA,GA), such that for all f : A→ B in C,

FB
ηB
> GB

FA

F (f)

∨
ηA
> GA

G(f)

∨

is commutative. This need not be studied seperately, though, because F and G
are actually covariant functors from Cop to D.

Let F,G,H : C → D be functors, η : F ⇒ G and ζ : G ⇒ H natural
transformations. Then it is clear that the assignment A → ζAηA is a natural
transformation from F to H. It is notated as ζη and is called the composite
natural transformation. Also, we have the identity natural transfor-
mation 1F from F to F assigning A → 1FA. Evidently (θζ)η = θ(ζη) and
1Gη = η = η1F when they are defined. It therefore follows that the covariant
functors from C to D form a category, whose morphisms are natural trans-
formations of functors. [We temporarily allow hom(F,G) to be a proper class
here.] It is called the functor category of C to D and is notated DC.

Evidently in DC, isomorphisms are natural isomorphisms of functors.

EXERCISES
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1. Let F : C→ D be a covariant functor.

(a) F preserves isomorphisms; that is, if f : A→ B is an isomorphism in
C, then F (f) : FA→ FB is an isomorphism in D.

(b) F also preserves sections and retractions.

(c) If F (f) is monic and F is faithful, then f is monic. Give a counterex-
ample when F is not faithful.

(d) If f is monic and F is full, then F (f) is monic. Give a counterexample
when F is not full.

(e) Repeat parts (c) and (d) with “monic” replaced with “epic”.

(f) What if F is contravariant? Modify parts (a)-(e) to hold for contravari-
ant F .

2. If Q is any class of objects which assigns any two objects A,B a set
hom(A,B), but there’s no notion of composition of morphisms or identity
morphisms, Q is called a quiver. Thus a category is a quiver when that
information is disregarded in it.

If Q and R are quivers, a map from Q to R is kind of like a functor
without the structure to preserve: it assigns each A ∈ ob(Q) an object
FA in R and each f : A→ B in Q a map F (f) : FA→ FB in R.

(a) For each quiver Q, the define the free category C given by Q as
follows: ob(C) = ob(Q), and for any objects A,B, homC(A,B) is the
set of all strings of the form fn . . . f2f1 with f1 : A → A1, f2 : A1 →
A2, . . . fn : An−1 → B in Q. When A = B, the empty string is included
as 1A. Define the composition of morphisms by the obvious juxtaposition.
Verify that C is indeed a category.

(b) Let I : Q → C be the map sending objects to themselves and mor-
phisms to themselves as one-element strings. If D is a category and
J : Q → D is a map, there is a unique functor F : C → D such that
J = FI.

3. Let U be the functor Ring → Grp of Example 6, and Mn the functor
from Ring → Ring of Example 8. Let GLn be the composite functor
UMn; to what does it send a ring R?

4. Let T : V(S1) → V(S2) be a takeoff of varieties, and F,G the functors
given in Examples 1 and 12.

(a) For each A ∈ V(S1), regard A as a V(S2)-algebra with the derived
structure, and let (U, i) be a universal enveloping A for the takeoff T .
Show that i : A → U has a unique retraction rA : U → A which is an
Ω1-homomorphism.

(b) Explain why rA ∈ homV(S1)(GFA,A).

(c) Show that A→ rA is a natural transformation from GF to 1V(S1).
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5. (a) Give two examples of covariant functors V(S)→ V(S)−sub. [V(S)−sub
is defined in Exercise 7 of Section 1.]

(b) Give two examples of covariant functors V(S)−sub→ V(S).

(c) Do parts (a) and (b) for V(S)−con.

(d) Now express canonical monomorphisms and canonical epimorphisms
in the form of natural transformations.

6. Let C be a category, A an object of C. Let C/A be the category in
Example 11 of Section 1. Define F : C/A → C sending (B, f) → B and
each morphism u to itself. Then F is a functor.

7. Let F,G : C → D be functors, and suppose for each A ∈ ob(C), ηA :
FA → GA is any morphism. [This is called an infranatural transfor-
mation.] Show that Cη is a subcategory of C when defined by ob(Cη) =
ob(C), and each f ∈ homC(A,B) is in homCη (A,B) if and only if

FA
ηA
> GA

FB

F (f)

∨
ηB
> GB

G(f)

∨

is commutative. [Cη is referred to as the naturalizer of η.]

8. Let F,G : C → D, H : D → E,K : B → C be functors. Let η : F ⇒ G
be a natural transformation.

(a) Hη : HF ⇒ HG is a natural transformation given by A→ H(ηA) for
A ∈ ob(C).

(b) ηK : FK ⇒ GK is a natural transformation given by A → ηKA for
A ∈ ob(B).

Now assume capital letters are functors and lowercase Greek letters are
natural transformations.

(c) The products are functorial :

F (ζη) = (Fζ)(Fη), F1G = 1FG, (ζη)G = (ζG)(ηG), 1FG = 1FG

when they are defined. [Hint : Just use the definition!]

(d) The products form a biaction:

(GF )η = G(Fη), 1Dη = η, η(GF ) = (ηG)F, η1C = η, (Gη)F = G(ηF )

when they are defined.

(e) Suppose F, F ′ : C → D, G,G′ : D → E are functors and η : F ⇒
F ′, ζ : G ⇒ G′ are natural transformations. Show that (ζF ′)(Gη) =
(G′η)(ζF ) as natural transformations GF ⇒ G′F ′. [Hint : This comes
from the naturality of one of them.]
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9. Express Example 9 of Section 1 in the form of a functor category.

10. If C and D are categories and A ∈ ob(C) is fixed, then P : DC → D
given by F → FA, η → ηA is a functor. It is called the projection onto
A of the functor category.

11. Let C,D,E be categories, F : D→ E a functor. Use Exercise 8 to define
functors FC : DC → EC and CF : CE → CD.

12. (a) A functor F : C → D is an isomorphism provided there exists a
functor G : D → C such that GF = 1C and FG = 1D. Informally, what
can you say about isomorphic categories?

(b) Let ∼= denote natural isomorphism of functors here. If F ∼= G, then
HF ∼= HG and FK ∼= GK when they are defined. [Hint : Exercise 11
gives a shortcut.]

(c) A functor F : C → D is an equivalence if there exists a functor
G : D→ C such that GF ∼= 1C and FG ∼= 1D. C and D are equivalent
if such a functor F exists. Show that this is an equivalence relation on the
categories. Also, isomorphic categories are equivalent, but not conversely.

(d) A functor F : C→ D is an equivalence if and only if F is faithful and
full and for every B ∈ ob(D) there exists A ∈ ob(C) such that FA and
B are isomorphic in D. [Hint : ⇒ If GF ∼= 1C and FG ∼= 1D, then FG
and GF are faithful and full [why?] Use this to prove that F and G are
faithful and full. Also show that for B ∈ ob(D), FGB is isomorphic to
B. ⇐ Define G : D→ C sending each B to some A such that there exists
an isomorphism σB : FA→ B. Show that there is a unique way for G to
assign morphisms so that σ is a natural isomorphism FG ∼= 1D. To show
GF ∼= 1C, note that for each A ∈ ob(C) there is a unique isomorphism
ηA : GFA→ A such that F (ηA) = σFA.]

13. Recall that if A,B,C are V(S) algebras, (A×B)×C ∼= A× (B ×C) due
to an isomorphism σA,B,C sending ((a, b), c) → (a, (b, c)). Show that this
isomorphism is natural in the sense that for all f : A→ A′, g : B → B′, h :
C → C ′ this diagram is commutative:

(A×B)× C σA,B,C
> A× (B × C)

(A′ ×B′)× C ′
(f×g)×h

∨
σA′,B′,C′

> A′ × (B′ × C ′)

f×(g×h)
∨

Here f×g denotes the product of maps; that is, (f×g)(a, b) = (f(a), g(b)).

14. Define the center of a category C to be the class of natural transforma-
tions from 1C to 1C; that is, hom(1C, 1C) in the functor category CC.
Evidently the center has a monoidal structure under composition of nat-
ural transformations.
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Now let M be a fixed monoid, C(M) = {a ∈ M | ax = xa ∀x ∈ M}
be the center of M . For c ∈ C(M), the assignment of each M -action X
to the homomorphism x → cx from X → X is a natural transformation
η(c) from 1M−act to itself. Furthermore, the map c → η(c) is a monoid
isomorphism from C(M) into the center of M−act.
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2.4 - Products and Coproducts

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

Objects in a category can be combined in interesting ways. Two of the conve-
nient operators combining them are products and coproducts. To see what they
are like, consider V(S) algebras.

If theAα are V(S) algebras, one can takeA = ΠAα, along with the projection
homomorphisms pα : A→ Aα from the product.

Now suppose B is a Ω-algebra and fα : B → Aα is a homomorphism for
each α. Define f : B → A so that f(b)α = fα(b). That determines f(b) for each
b, and it is seen that f is the only homomorphism B → A such that fα = pαf
for all α. This illustrates a product in terms of purely homomorphisms:

Whenever fα : B → Aα is a homomorphism for each α, there is a
unique homomorphism f : B → ΠAα such that fα = pαf for all α.

This property leads to the following definition in category theory.

DEFINITION
Let {Aα} be a batch of objects in a category C [with possible repetitions]. A

product of the Aα’s is a pair (A, {pα}) with A ∈ ob(C) and pα : A → Aα for
each α, such that whenever B ∈ ob(C) and fα : B → Aα for each α, there is
a unique morphism f : B → A such that for all α we have pαf = fα; in other
words,

B
f
> A

Aα

pα
∨fα >

is commutative.

The fact that the definition says “a product,” rather than “the product,” can
be remedied, as Exercise 1 shows that products are unique up to a unique iso-
morphism.

EXAMPLES
1. We have just shown that products in V(S) coincide with the product of

algebras in Chapter 1, Section 2.
2. If {(Aα, Bα)} are objects in V(S)−sub, notice that with each Bα a

subalgebra of Aα, ΠBα is a subalgebra of ΠAα. We claim that (ΠAα,ΠBα),
along with the usual projections pα : ΠAα → Aα, is a product of the objects in
V(S)−sub. To begin with, the pα’s are admitted by the category since pα sends
elements of ΠBα to elements of Bα. Now suppose fα : (C,C1)→ (Aα, Bα) are
morphisms. This requires that each fα is a homomorphism C → Aα satisfying
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fα(C1) ⊆ Bα. With that, if f : C → Aα is the coordinate map [pαf = fα for
each α], f(C1) ⊆ ΠBα. This means f is a morphism (C,C1) → (ΠAα,ΠBα),
and is clearly the only one satisfying pαf = fα. This proves our claim.

3. Let {(Aα,Φα)} be objects in V(S)−con. For a, b ∈ ΠAα, define aΦb if
aαΦαbα for all α. Then this is a congruence relation on ΠAα, and an argument
similar to the one above shows that (ΠAα,Φ) is a product of the objects in
V(S)−con.

4. Products in Cat are product categories with the projection functors.
5. If V(S1) and V(S2) are varieties, one can form a new variety V(S3) taking

disjoint unions of operators and identities. That is, Ω3(n) = Ω1(n) ] Ω2(n)
for n ≥ 0 and S3 = S1 ] S2. Then a V(S3) algebra is precisely a set with
both a V(S1) structure and a V(S2) structure which are independent of one
another. Takeoffs V(S3) → V(S1),V(S2) can be formed, each dropping one of
the structures, and V(S3) is a product of V(S1) and V(S2) in the category Var.

6. What does it mean for an object T to be a product of the empty batch
{}? Well, there are no pα’s involved in this case, and whenever B ∈ ob(C)
[there are no fα’s involved], there is a unique morphism f : B → T [no diagram
commutativity is needed]. Stated otherwise, for all B ∈ ob(C), hom(B, T ) con-
sists of a single element; in other words, T is a terminal object.

Coproducts are basically the dual of products, and in fact, we have already
started them in Section 9 of Chapter 1. They carry over to category theory.

DEFINITION
Let {Aα} be a batch of objects in a category C [with possible repetitions]. A

coproduct of the Aα’s is a pair (A, {iα}) with A ∈ ob(C) and iα : Aα → A for
each α, such that whenever B ∈ ob(C) and fα : Aα → B for each α, there is
a unique morphism f : A → B such that for all α we have fiα = fα; in other
words,

Aα
iα
> A

B

f

∨fα >

is commutative.

Coproducts are basically products in the opposite category Cop. Coproducts
in V(S) coincide with the definition of a coproduct in Section 9 of Chapter 1.
There, we proved that coproducts always exist in V(S), and here we shall use
the proof to derive a subtle and interesting explanation on how to find them.

1. Suppose you are given a batch {Aα}. Let F be the free algebra given by
the set ]Aα with set map i : ]Aα → F . Then form jα : Aα → F for each α by
composing i with each injection Aα → ]Aα.

2. To make each jα a homomorphism, identify any expression in F whose
symbols come from a single Aα with its value given by Aα. That is, identify

2



(ωjα(a1)jα(a2) . . . jα(an)) with jα(ωa1a2 . . . an). To do this, find the congruence
relation Θ on F generated by those pairs and let π : F → F/Θ be the canonical
epimorphism. Make no more identifications than that or it won’t work.

3. Then each πjα is a homomorphism and (F/Θ, πjα) is a coproduct of the
Aα’s.

To make a long story short, the coproduct of algebras consists of expressions
whose symbols are in all the algebras, such that the identities in S are satisfied,
and any expression with its symbols in a single algebra is identified with the
value the algebra gives it. You can give each algebra a different color to see this
easily. Operator symbols and parentheses have no color.

In the case of groups, this precise procedure gives the familiar free product
on groups; same for monoids. Also, it gives R-modules their direct sum, and
commutative rings their tensor product [to be learned later].

EXERCISES

1. Let {Aα} be a batch of objects in a category C. If (A, {pα}) and (A′, {p′α})
are both products of the Aα’s in C, there is a unique isomorphism σ : A→
A′ such that for all indices α the diagram

A
σ
> A′

Aα

p′α
∨pα >

is commutative. Dualize.

2. Let {Aα} be a batch of objects in a category C. Define C/{Aα} as follows:
ob(C/{Aα}) is the class of pairs of the form (B, {fα}) where B ∈ ob(C)
and fα : B → Aα for each α, and hom((B, {fα}), (B′, {f ′α})) is the set of
morphisms u : B → B′ such that for every α

B

Aα

fα
>

B′

u
∨

f ′
α

>

is commutative. Define composition of morphisms and identity morphisms
as in C. Verify that this data form a category, and that a product of the
Aα’s is a terminal object in C/{Aα}. Dualize.

3. If T is a terminal object of category C, show that A is a product of T and
A and determine the projection maps.

4. If I is an initial object of a category C, show that A is a coproduct of I
and A.

5. If C is a category given by a preorder [Example 7 of Section 1], describe
products of objects in C.
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6. (a) Suppose C is a category in which any two objects in C have a product
in C. [Such a category is called a category with finite products.] Show
that any finite batch of objects in C has a product in C.

(b) Give an example of a category C with finite products having an infinite
batch of objects with no product.

7. Let f1 : A1 → B1 and f2 : A2 → B2 be morphisms in a category C.
Suppose (A, p1, p2) is a product of A1 and A2 and (B, q1, q2) is a product
of B1 and B2.

(a) There is a unique morphism f : A → B such that the two rectangles
in

A1 <
p1

A
p2
> A2

B1

f1
∨
<
q1

B

f

∨
q2
> B2

f2
∨

are commutative.

(c) Suppose C is a category with finite products. Define F : C×C→ C
as follows: Assign each object (A1, A2) to a product of A1 and A2, and
each morphism (f1, f2) to the morphism f given in part (a). Verify that
F is a functor. It is called the product-giving functor for C.

(d) Any two functors defined in the way of (c) are naturally isomorphic.
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2.5 - Universals

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

The universals learned in Section 1.11 can be generalized to any functor of
categories. Firstly, if T : V(S1) → V(S2) is a takeoff of varieties, recall what a
universal enveloping B ∈ V(S2) is: it consists of a pair (U, u) with U ∈ V(S1)
and u : B → U an Ω2-homomorphism, such that whenever (A, f) is another
such pair, there is a unique Ω1-homomorphism h : U → A such that

B
u
> U

A

h

∨f >

is commutative.
This leads to the following definition. Exercise care in the fact that the

statement f = hu treats U,A and h as they are in V(S2) when they are virtu-
ously in V(S1).

DEFINITION
Let F : C → D be a functor, B ∈ ob(D). A universal from B to F is

a pair (U, u) with U ∈ ob(C) and u ∈ homD(B,FU) such that whenever (A, f)
is another pair with A ∈ ob(C) and f ∈ homD(B,FA) there exists a unique
h ∈ homC(U,A) such that the diagram

B
u
> FU

FA

F (h)

∨f >

is commutative. U is called the universal object and u is called the universal
map.

EXAMPLES
1. A takeoff of varieties becomes a functor, and the definition of a universal

for that functor coincides with the universal learned in Section 1.11.
In the special case where T is the unique takeoff from V(S) to the variety of

sets, F : V(S) → Set is the forgetful functor, and a universal from a set X to
F is FS(Ω, X), the free V(S)-algebra given by X.

2. Let Dom and Field be the categories of integral domains and fields,
respectively. Then let Domm be the subcategory of Dom keeping all the objects
but only the monomorphisms. Since every field is an integral domain and every
homomorphism of fields is injective, one can form a functor F : Field→ Domm

sending every field and morphism to itself. For any integral domain R, let K
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be the field of quotients of R, with injection i : R → K. Then (K, i) is easily
seen to be a universal from R to F .

3. Let C be any category and ∆ : C→ C×C be the diagonal functor given
in Example 14 of Section 3. Then a universal from (B1, B2) ∈ ob(C×C) to ∆
is a coproduct of B1 and B2. To see this, the universal takes the form (U, u)
with u : (B1, B2)→ ∆U , that is, [since ∆U = (U,U)], u is a pair of morphisms
u1 : B1 → U, u2 : B2 → U . The additional property is satisfied that whenever
f : (B1, B2)→ ∆A, that is, f is a pair of morphisms, f1 : B1 → A, f2 : B2 → A,
there is a unique morphism h : B → A such that f = ∆(h)u. Since ∆(h) =
(h, h), this says the same thing as f1 = hu1, f2 = hu2. Therefore, (U, u1, u2) is
a coproduct of B1 and B2.

This generalizes to coproducts of more than two objects.

Suppose F : C → D is a functor and B ∈ ob(D). The proof of Theorem 1.28
applies here, showing that if (U, u) and (U ′, u′) are both universals from B to
F , there exists a unique isomorphism σ : U → U ′ such that i′ = F (σ)i. Thus
universals are unique up to a unique isomorphism. There is also a “composition
law” for universals; see Exercise 1.

As expected, there is a dual to the definition obtained by reversing the ar-
rows:

DEFINITION
Let G : D → C be a functor, A ∈ ob(C). A universal from G to A is

a pair (V, v) with V ∈ ob(D) and v ∈ homC(GV,A) such that whenever (B, f)
is another pair with B ∈ ob(D) and f ∈ homC(GB,A) there exists a unique
h ∈ homD(B, V ) such that the diagram

GB

GV

G(h)

∨
u
> A

f

>

is commutative. V is called the universal object and v is called the universal
map.

EXAMPLES
1. Let V(S) be a variety and G : Set → V(S) be the free-algebra functor

[Example 12 of Section 3]. If A ∈ V(S), let V be the set A. By virtue of a
free algebra, the identity map V → A [they are the same set, but the codomain
is regarded as an algebra] extends to the evaluation homomorphism v :
FS(Ω, V )→ A. We claim that (V, v) is a universal from G to A. To see this, let
(B, f) be another pair with B a set and f : GB → A a homomorphism. Then,
composing with the inclusion B → GB yields a unique set map h : B → V [V
is the set A]. Checking on symbols shows that uG(h) = f and h is unique for
this property.
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This generalizes to the functor V(S2)→ V(S1) induced by a takeoff V(S1)→
V(S2) in Example 12 of Section 3. We leave it to the reader to carry out the
details.

2. Let M be a fixed monoid and G : M−act→ Set be the forgetful functor.
If X is a set, we define the power action as follows: XM is the set of all
functions from the monoid M to X, and for ϕ ∈ XM and n ∈ M , nϕ is the
map m → ϕ(mn) from M → X. It is straightforward that this makes XM a
power action. Furthermore, the projection p : XM → X sending ϕ→ ϕ(1) can
be considered. We claim that (XM , p) is a universal from G to X. Thus this
functor possesses both kinds of universals.

Suppose Y is any M -action and f : Y → X is a set map. Then define
h : Y → XM by assigning h(y) to the map m → f(my) from M → X. Thus
h(y)(m) = f(my). We need to show three things:

(i) h is a homomorphism;
(ii) ph = f as maps Y → X;
(iii) h is unique for properties (i) and (ii).
To show (i), note that for n ∈ M , h(ny) is the map m → f(mny). On

the other hand, nh(y) — by definition of the power action — is the map from
m → h(y)(mn) = f((mn)y) = f(mny). Therefore, h(ny) an nh(y) are equal,
so that h is a homomorphism.

(ii) is easy to show because for all y ∈ Y , ph(y) = p(h(y)) = h(y)(1) =
f(1y) = f(y). To show (iii), suppose h′ : Y → XM is also a homomorphism
satisfying ph′ = f . Then for all y ∈ Y,m ∈M ,

h′(y)(m) = h′(y)(1m) = mh′(y)(1) = h′(my)(1) = p(h′(my)) = ph′(my) = f(my)

Therefore h′(y) is necessarily the map m→ f(my) for all y ∈ Y , so that h′ = h
and h is uniquely determined.

EXERCISES

1. Let F1 : C → D, F2 : D → E be functors, and B ∈ ob(E). If (U2, u2) is
a universal from B to F2 and (U1, u1) is a universal from U2 to F1, prove
that (U1, F2(u1)u2) is a universal from B to F2F1.

2. Let C be any category and ∆ : C→ C×C be the diagonal functor. Then
a universal from ∆ to (B1, B2) ∈ ob(C×C) is a product of B1 and B2.

3. Let F : C → D be a functor, B ∈ ob(D). Define a category D(B,F )
as follows: the objects of D(B,F ) are the pairs of the form (A, f) with
A ∈ ob(C) and f : B → FA. If (A1, f1), (A2, f2) are objects, a morphism
(A1, f1) → (A2, f2) in D(B,F ) is an arrow g : A1 → A2 such that f2 =
F (g)f1. Verify that this data forms a category, and that a universal from
B to F is an initial object of D(B,F ). Dualize.
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2.6 - Limits and Colimits

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if
desired.

Products, pullbacks and difference kernels are all examples of a more general
concept called the limit. To see this, let J be an “elementary” category [such
as a discrete category], and D : J→ C a functor. Then D is called a diagram
of type J in C.

Define a cone to the diagram D to be a natural transformation from a con-
stant functor onto an object L in C [Example 5 of Section 3] to D. Stated
otherwise, it is a pair (L, {ηα}) with L ∈ ob(C), ηα : L→ Dα with α ∈ ob(J),
such that for every f ∈ homJ(α, β) the following diagram is commutative:

Dα
D(f)
> Dβ

L

ηβ

>

ηα

<

Given this data we define

DEFINITION
Let D : J → C be a diagram of type J in C. A limit of D is defined to be

a cone (L, {ηα}) to D such that for every cone (B, {ζα}) to D, there exists a
unique morphism θ : B → L such that ζα = ηαθ for all α.

Again it is routine to show the “uniqueness up to a unique isomorphism”: if
(L, {ηα}) and (L′, {η′α}) are both limits of D, there is a unique isomorphism
L′ → L such that η′α = ηασ for all α. For one, this is an immediate consequence
of limits being universals for suitably defined categories. See Exercise 1.

EXAMPLES
1. If J is a discrete category, then its only morphisms are the identity

morphisms, and the commutativity of the diagram in the definition of a cone
is a tautology. Thus a cone is simply a pair (L, {ηα}) with L ∈ ob(C) and
ηα : L→ Dα. It is easy to see that a limit of D is simply a product of the Dα’s
[Section 4].

2. Let J be the category with only two objects α, β such that the only
morphisms are the identity morphisms and two morphisms α → β. Then a
diagram of type J in C is a pair of objects Aα, Aβ ∈ ob(C) with two morphisms
f1, f2 : Aα → Aβ . A cone is a triple (L, ηα, ηβ) such that ηβ = f1ηα and
ηβ = f2ηα, or is identifiably a pair (L, η) with f1η = f2η. Thus a limit is a
difference kernel [or equalizer] [see Exercise 2 of Section 2]. This can be done
for more than two morphisms as well.
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3. Suppose J has three objects, α, β, γ and two nonidentity morphisms,
α → γ and β → γ. Then a diagram of type J in C is a triple of objects
A1, A2, A ∈ ob(C) with two morphisms f1 : A1 → A, f2 : A2 → A. A cone is
identifiably a pair (L, η1, η2) such that f1η1 = f2η2 and a limit is therefore a
pullback in this case.

One of the things which makes the category V(S) so special is that it contains
all limits. That is, every diagram in V(S) of any type has a limit, as we now
prove. [Such a category is called a complete category.]

THEOREM 2.3 Limits exist in V(S) for any diagram D : J→ V(S).

Proof of Theorem 2.3. Let D : J → V(S) be a diagram. Then define A to be
the following subset of the product

∏
α∈ob(J)Dα:

A = {a ∈
∏

α∈ob(J)

Dα | D(f)(aα) = aβ ∀f ∈ homJ(α, β)}

We claim that A is a subalgebra of the product. Suppose ω ∈ Ω(0), then
(ωΠDα) ∈ A because D(f)(ωDα) = (ωDβ) for all f : α → β. Now suppose
n ≥ 1, ω ∈ Ω(n) and a1, a2, . . . an ∈ A. Then for all f : α→ β,

D(f)((ωa1a2 . . . an)α) = D(f)(ωa1
αa

2
α . . . a

n
α) = (ωD(f)(a1

α)D(f)(a2
α) . . . D(f)(anα))

= (ωa1
βa

2
β . . . a

n
β) = (ωa1a2 . . . an)β

Therefore, (ωa1a2 . . . an) ∈ A, and A is a subalgebra. Now let ηα : A→ Dα be
the restricted projections [that is, pα(a) = aα for a ∈ A]. Then (A, {ηα}) is a
cone to D because the ηα are homomorphisms and for all f : α→ β in J,

ηβ(a) = aβ = D(f)(aα) = D(f)ηα(a)

Therefore ηβ = D(f)ηα.
Now suppose (B, {ζα}) is any cone to D. Then ζα : B → Dα and one can

form the coordinate map ζ : B → ΠDα satisfying ζ(b)α = ζα(b). We claim that
im ζ ⊆ A, so that ζ can be surjectified into a homomorphism θ : B → A. To
see this, use the fact that (B, {ζα}) is a cone, and hence

D(f)(ζ(a)α) = D(f)(ζα(a)) = D(f)ζα(a) = ζβ(a) = ζ(a)β

Therefore, θ exists and, and obviously ζα = ηαθ. Since an element of A is com-
pletely determined by where each ηα sends it, θ is unique. Therefore, (A, {ηα})
is a limit. �

Colimits are the dual of limits, and they are obtained by reversing the arrows.
This doesn’t mean make the functor J→ C contravariant, though [which could
be remedied anyway, by changing J into Jop]. If D : J → C is a diagram, a
cocone from D is defined to be a natural transformation from D to a constant
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functor. In summary, it is a pair (L, {ηα}) with L ∈ ob(C), ηα : Dα → L with
α ∈ ob(J), such that

L

Dα
D(f)
>

ηα

>

Dβ

ηβ

<

is commutative for suitable morphisms f in J. This is dual to a cone.

DEFINITION
Let D : J→ C be a diagram of type J in C. A colimit of D is defined to be

a cocone (L, {ηα}) from D such that for every cocone (B, {ζα}) from D, there
exists a unique morphism θ : L→ B such that ζα = θηα for all α.

Once again, it is routine to show uniqueness up to isomorphism of this.

EXAMPLES
1. If J is a discrete category, then a cocone is simply a pair (L, {ηα}) with

L ∈ ob(C) and ηα : Dα → L. The coherence diagram is automatic. It is easy
to see that a colimit of D is simply a coproduct of the Dα’s.

2. Let J be the category with only two objects α, β such that the only mor-
phisms are the identity morphisms and two morphisms α→ β. Then a colimit
of a diagram is a difference cokernel [or coequalizer] of the two morphisms. This
can be done with more than two morphisms as well.

3. Suppose J has three objects, α, β, γ and two nonidentity morphisms,
γ → α and γ → β. Then a colimit of a diagram is a pushout.

What’s quite unbelievable is that V(S) also contains all colimits! The material
covered in the previous chapter can be used to prove this.

THEOREM 2.4 Colimits exist in V(S) for any diagram D : J→ V(S).

Proof of Theorem 2.4. Let D : J → V(S) be a diagram. Then let A =∐
α∈ob(J)Dα, with injections iα : Dα → A for α ∈ ob(J). Now, let Θ be the

congruence relation on A generated by the following subset of A×A:

{(iβD(f)(a), iα(a)) | f : α→ β in J, a ∈ Dα}

Set L = A/Θ, π : A → L the canonical epimorphism and ηα = πiα for α ∈
ob(J). We claim that (L, {ηα}) is a cocone from D. To show this, we need to
show that ηβD(f) = ηα for f : α → β in J. This follows because for all a ∈
Dα, (iβD(f)(a), iα(a)) ∈ Θ by definition, so that ηβD(f)(a) = πiβD(f)(a) =
πiα(a) = ηα(a). Therefore, ηβD(f) = ηα and (L, {ηα}) is a cocone.

Now suppose (B, {ζα}) is another cocone from D. Then since each ζα :
Dα → B and A is the coproduct of the Dα’s, there is a unique morphism
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ζ : A→ B such that ζiα = ζα for all α. Whenever f : α→ β ∈ J and a ∈ Dα,

ζiβD(f)(a) = ζβD(f)(a) = ζα(a) = ζiα(a)

because the ζα’s form a cocone; hence (iβD(f)(a), iα(a)) ∈ ker ζ. Since the
congruence relation Θ is generated by pairs of that form, Θ ⊆ ker ζ, and ζ can
be injectified [Theorem 1.10] to a morphism θ : L→ B satisfying ζ = θπ.

Furthermore, ζα = ζiα = θπiα = θηα for all α.
Since any homomorphism θ′ satisfying ζα = θ′ηα agrees with θ on all ele-

ments of images of the ηα, but they generate L, θ is unique, completing the
proof. �

EXERCISES

1. Let J,C be categories, and CJ the functor category. Define the diagonal
functor ∆ : C→ CJ by sending each A ∈ ob(C) to the constant functor
onto A. For f : A → B in C, ∆(f) is the natural transformation η :
∆A ⇒ ∆B with ηα = f for all α. Show that a limit of a diagram D is a
universal from ∆ to the object D of CJ, and that a colimit is a universal
from D to ∆.

2. Suppose ι ∈ ob(J) is a initial object. If D : J → C is a diagram, then
(Dι, {ηα}) is a limit of D, where ηα is the result of applying D to the
unique morphism ι→ α in J. Dualize.

3. Show that any category with all products [including the terminal object]
and equalizers has all limits as follows. Let D : J → C be a diagram.
Now let A =

∏
α∈ob(J)Dα and P =

∏
f∈homJ(α,β)Dβ, where the latter

product is taken over all morphisms in J. Denote the projections from A as
p1
α : A→ Dα and the projections from P as p2

f : P → Dβ, f ∈ hom(α, β).

(a) Show that there is a unique morphism ϕ : A→ P such that p2
fϕ = p1

β

for f ∈ hom(α, β). [Hint : If you need a hint, think about how P is
defined.]

(b) Show that there is also a unique ψ : A→ P such that p2
fψ = D(f)p1

α

for f ∈ hom(α, β).

(c) Now let ε : L→ A be an equalizer of ϕ and ψ; show that (L, {p1
αε}) is

a limit of D.

(d) In a variety V(S) in universal algebra, recall that products are direct
products, and the equalizer of f, g : A1 → A2 is the canonical monomor-
phism from the subalgebra {a ∈ A1 | f(a) = g(a)}. Use this to find limits
in V(S). Are they really different from Theorem 2.3?

4. Let fi : Ai → B be morphisms in C for i = 1, 2. Then let gi : C → Ai,
i = 1, 2 be a pullback of f1 and f2. Prove that if f1 is monic then so is g2.
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5. A functor F : C → D is continuous if it preserves limits: Whenever
D : J→ C is a diagram and (A, {ηα}) is a limit of D, then (FA, {F (ηα)})
is a limit of FD. A cocontinuous functor is defined likewise, but for
colimits.

Let T : V(S1)→ V(S2) be a takeoff of varieties.

(a) The functor F : V(S1) → V(S2) given by Example 1 of Section 3, is
continuous. [Hint : Theorem 2.3 shows how to construct the limit. What
does the construction depend on?]

(b) The functor G : V(S2)→ V(S1) given by Example 12 of Section 3, is
cocontinuous. [Hint : This is a variation of Exercise 14 of Section 1.11.]

(c) If C is a complete category, then any functor F : C → D which
preserves products [including the terminal object] and equalizers is con-
tinuous. Dualize.
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2.7 - Hom Functors, Yoneda’s Lemma and

Representability

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

A hom functor is a functor F : C→ Set defined in a special way. Though they
have a seemingly basic definition, they are actually very important in the future
sections of this chapter.

Fix A ∈ ob(C), and define F as follows:
1. For each B ∈ ob(C), assign FB to the set hom(A,B);
2. For each f : B → B′ in C, define F (f) to be the set map from hom(A,B)

to hom(A,B′) sending h→ fh. [This set map is notated hom(A, f).]
It is feasibly shown that the data above defines a functor from C to Set.

This functor is denoted hom(A,−) and is called a covariant hom functor.
Now let F : C→ Set be any functor and let η be a natural transformation

hom(A,−)⇒ F . Then for any objectB in C, ηB is a set map hom(A,B)→ FB.
In particular, taking A for B, ηA is a set map hom(A,A) → FA. Therefore,
a = ηA(1A) is some element of FA. We claim that a completely determines
the natural transformation η. To see where ηB sends f : A → B, note the
commutativity of

hom(A,A)
ηA
> FA

hom(A,B)

hom(A,f)
∨

ηB
> FB

F (f)

∨

due to η being a natural transformation. Traveling 1A along each pair of arrows
yields ηB(hom(A, f)(1A)) = ηB(f1A) = ηB(f) and F (f)(ηA(1A)) = F (f)(a).
Therefore, ηB(f) = F (f)(a), which determines ηB .

It is straightforward to show that any a is possible: if a is an arbitrary
element of FA, define ηB : hom(A,B) → FB by ηB(f) = F (f)(a) for each B.
Then

hom(A,B)
ηB
> FB

hom(A,B′)

hom(A,f)
∨

ηB′
> FB′

F (f)
∨

is commutative for any f : B → B′, because one direction yields F (f)ηB and
the other ηB′ hom(A, f) and they are the same set map:

F (f)(ηB(h)) = F (f)(F (h)(a)) = (F (f)F (h))(a) = F (fh)(a) = ηB′(fh) =
ηB′(hom(A, f)(h))

Therefore, η is a natural transformation hom(A,−) ⇒ F . Also, ηA(1A) =
F (1A)(a) = 1FA(a) = a. What we have proved is summarized as follows.
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LEMMA 2.5 (YONEDA’S LEMMA) Let C be a category, A ∈ ob(C), F :
C → Set be a functor. Then for every a ∈ FA there is a unique natural
transformation η : hom(A,−) ⇒ F such that a = ηA(1A). This natural trans-
formation is given by ηB being the map f → F (f)(a) from hom(A,B) → FB
for each B.

Hopefully this sounds like Exercise 3 of Section 1.10 a bit.
Now let F : V(S) → Set be the forgetful functor. Then let A be the free

V(S)-algebra given by a single symbol a, and let η be the natural transforma-
tion hom(A,−)⇒ F satisfying ηA(1A) = a. We have ηB(f) = F (f)(a) for each
f : A→ B. Since A is the free algebra given by a, then for every b ∈ B there is
a unique homomorphism f : A→ B such that f(a) = b; this implies that ηB is
bijective, so that η is actually a natural isomorphism. Hence (A, a) is a special
pair for the functor F , which yields the following definition.

DEFINITION
Let F : C → Set be a functor. If there exists a pair (A, a) with A ∈

ob(C), a ∈ FA such that the natural transformation hom(A,−) ⇒ F induced
by Lemma 2.5 is a natural isomorphism, (A, a) is called a representative of
the functor F . If functor which has a representative is said to be representable.

EXAMPLES
1. If F : V(S) → Set is the forgetful functor, we have seen that F is

representable with (FS(Ω, {a}), a) as a representative.
2. Let F : C → Set be the constant functor onto the one-element set {a}.

Then a representative of F is (I, a) with I an initial object in C. This is because
for every A ∈ C, hom(I, A) and FA are both one-element sets, so they come
in a unique natural bijection. Hence F is representable if and only if C has an
initial object; in particular, this holds if C = V(S).

3. (Quotient algebras) Let A be a V(S)-algebra and Φ a congruence relation
on A. Define F : V(S) → Set sending B to the subset {h ∈ hom(A,B) | Φ ⊆
kerh} of hom(A,B). Then clearly for f : B → B′, hom(A, f) sends elements of
FB to elements of FB′, so it can be restricted to a set map F (f) : FB → FB′.
It is easy to see that this data defines a functor.

Now let π : A→ A/Φ be the canonical epimorphism, then π ∈ F (A/Φ). We
claim that (A/Φ, π) is a representative of F . This is because ηB : hom(A/Φ, B)⇒
FB sends h→ F (h)(π) = hπ. The injectification theorem (1.10) shows that for
all f : A → B such that Φ ⊆ ker f , there is a unique h : A/Φ → B such that
f = hπ. This means ηB is actually bijective, so η is a natural isomorphism.

4. (Colimits) Let D : J → C be a fixed diagram of type J in C. Define
F : C → Set sending each object B of C to the set of cocones (B, {ηα}) from
D to B. If f : B → B′ is a morphism in C and (B, {ηα}) is a cocone from D,
clearly (B′, {fηα}) is also a cocone; this induces a set map F (f) : FB → FB′.
It is straightforward to show that F is a functor.

Now let (L, {ηα}) be a colimit of D. We claim that L, along with this
cocone, is a representative of F . The natural transformation η : hom(L,−)⇒ F
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assigns each ηB , B ∈ ob(C) the map θ → F (θ)(L, {ηα}) = (B, {θηα}) from
hom(L,B) → FB. Recall that the virtue of being a colimit is that for any
cocone (B, {ζα}), there is a unique θ : L → B such that ζα = θηα for every α;
that is, (B, {ζα}) = ηB(θ). Therefore ηB is bijective.

Conversely, every representative of F is a colimit of D; see Exercise 5 for
proof.

We now fix A ∈ ob(C) and define a contravariant functor as follows.
1. For each B ∈ ob(C), assign FB to the set hom(B,A).
2. For each f : B → B′ in C, define F (f) to be the map hom(B′, A) →

hom(B,A) sending h→ hf . [This set map is notated hom(f,A); be wary that
B and B′ swap places.]

This functor is denoted hom(−, A) and is called a contravariant hom
functor. Another way to view this is that homC(−, A) = homCop(A,−) which
is a covariant functor Cop → Set. Yoneda’s Lemma then dualizes to hom(−, A)
as follows:

LEMMA 2.5 (CONTINUED) Let F : C → Set be a contravariant functor,
A ∈ ob(C). Then for every a ∈ FA there is a unique natural transformation
η : hom(−, A)⇒ F such that a = ηA(1A). This natural transformation is given
by ηB being the map f → F (f)(a) from hom(B,A)→ FB for each B.

This immediately follows from the first one when Cop is used. When the pair
(A, a) is special enough for η to be a natural isomorphism, F is said to be rep-
resentable with (A, a) as a representative.

EXAMPLES
1. Let F : C → Set be the contravariant constant functor onto the one-

element set {a}. Then a representative of F is (T, a) with T a terminal object
in C. Hence F is representable if and only if C has a terminal object.

2. (Subalgebras) Let A be a V(S)-algebra and A′ a subalgebra on A. Define
F : V(S) → Set sending B to the subset {h ∈ hom(B,A) | h(B) ⊆ A′} of
hom(B,A). Then clearly for f : B → B′, hom(f,A) sends elements of FB′ to
elements of FB, so it can be restricted to a set map F (f) : FB′ → FB. This
data defines a contravariant functor.

Now let ι : A′ → A be the canonical monomorphism, then ι ∈ FA′. We
claim that (A′, ι) is a representative of F . This is because ηB : hom(B,A′) ⇒
FB sends h → F (h)(ι) = ιh. The bijectivity of each ηB follows from the
surjectification theorem (1.5).

3. (Limits) Let D : J → C be a fixed diagram of type J in C. Define
F : C → Set sending each object B of C to the set of cones (B, {ηα}) from B
to D. Then for f : B′ → B a morphism in C and (B, {ηα}) a cone to D, so is
(B′, {ηαf}), inducing a set map F (f) : FB → FB′. This defines a contravariant
functor F . The reasoning above shows that a representative of F is a limit of
the diagram D.
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4. Let P be the contravariant functor of Example 3 of Section 3. Now let Z2

be the set {0, 1}, then {1} is a subset of Z2, hence is in P(Z2). We claim that
P is representable with (Z2, {1}) as a representative. The natural transforma-
tion η : hom(−,Z2) ⇒ P sends a set X to the map ηX : hom(X,Z2) ⇒ P(X)
sending f → F (f)({1}) = f−1({1}) = {x ∈ X | f(x) = 1}. Since for every
subset X ′ of X, the characteristic function f : X → Z2 [f(x) = 1 for x ∈ X ′, 0
for x ∈ X −X ′] is the unique element of hom(X,Z2) sent to X ′ by ηX , ηX is
bijective. Therefore, η is a natural isomorphism.

The hom functors have a huge use in the next section.

EXERCISES

1. Use Yoneda’s Lemma to show that for every h : A′ → A in C, there is
a unique natural transformation η : hom(A,−) ⇒ hom(A′,−) such that
h = ηA(1A).

2. Let C be an arbitrary category, and define H : Cop×C→ Set as follows.
For each pair (A,B) of objects of C, H(A,B) = hom(A,B). To define
H(f) for f : (A,B) → (A′, B′) in Cop × C, note that f is a pair of
morphisms f1 : A′ → A, f2 : B → B′ of C. Assign H(f) the set map
h → f2hf1 from hom(A,B) to hom(A′, B′). Verify that this is a functor.
It is called the two-variable hom functor.

3. Show that hom(A,−) is continuous. [See Exercise 5 of Section 6.] Con-
clude that every [covariant] representable functor is continuous.

4. Let X be a set, A ∈ ob(C), and A′ =
∐
x∈X A be a copower of A with

injections ix : A → A′, x ∈ X. Then define u : X → hom(A,A′) sending
x→ ix. Show that (A′, u) is a universal from X to hom(A,−).

5. A representative of a functor F is precisely a universal from the one-
element set {◦} to F . Conclude that if (A, a) and (A′, a′) are two rep-
resentatives of F , there is a unique isomorphism σ : A → A′ such that
F (σ)(a) = a′.

6. Let f : A′ → A, g : B → B′ in C. Explain why

hom(A,B)
hom(f,B)

> hom(A′, B)

hom(A,B′)

hom(A,g)
∨

hom(f,B′)
> hom(A′, B′)

hom(A′,g)
∨

is a commutative diagram. Use this to show that F : C → SetC is a
contravariant functor when one defines FA = hom(A,−) and for f : A′ →
A in C, F (f) : hom(A,−) ⇒ hom(A′,−) is the natural transformation
given by ηB = hom(f,B) : hom(A,B)→ hom(A′, B).
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2.8 - Adjunctions
Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

We learned universals in Section 5. In this section, we use them to define a
functor. Suppose F : C → D is a functor such that for every object B in D,
there exists a universal (U, u) from B to F .

Now let hom(B,F−) be the functor hom(B,−)F : C → Set; it sends A →
homD(B,FA) and a morphism f : A → A′ to hom(B,F (f)) : hom(B,FA) →
hom(B,FA′) [this makes sense since F (f) : FA → FA′]. We claim that
hom(B,F−) is representable with (U, u) as a representative; to see this, define
ηA : hom(U,A) → hom(B,FA) sending h → F (h)u. Then clearly ηU (1U ) = u
and η is a natural transformation from hom(U,−) to hom(B,F−); that is, the
ηA’s are natural in the right variable. Also, by virtue of a universal, for every
A ∈ ob(C), f : B → FA there is a unique morphism h : U → A such that
f = F (h)u. This says that for every A ∈ ob(C), ηA is a bijection. Therefore, η
is a natural isomorphism.

We proceed to define a functor G : D → C as in Example 12 of Section 3.
For each B ∈ D, let (GB, uB) be any universal from B to F . then the ηA’s
in the above paragraph are bijections hom(GB,A) → hom(B,FA) which are
natural in the right variable. To define G(f) for f : B → B′ in D, note that by
the universality of (GB, uB) there is a unique morphism f̃ : GB → GB′ such
that F (f̃)uB = uB′f :

B
f
> B′

FGB

uB

∨
F (f̃)
> FGB′

uB′
∨

Set G(f) = f̃ . Then FG(f)uB = uB′f for all f : B → B′ in D. For f : B →
B′, g : B′ → B′′ in D, the commutativity of the squares in

B
f

> B′
g

> B′′

FGB

uB

∨
FG(f)

> FGB′

uB′
∨

FG(g)
> FGB′′

uB′′
∨

and the functorial property FG(g)FG(f) = F (G(g)G(f)) imply that this dia-
gram is commutative:

B
gf

> B′′

FGB

uB

∨
F (G(g)G(f))

> FGB′′

uB′′
∨

Therefore, G(g)G(f) satisfies the property satisfied by only the morphismG(gf),
meaning G(gf) = G(g)G(f). Likewise, G(1B) = 1GB . Therefore, G is a functor.
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Now for allA ∈ ob(C), B ∈ ob(D), define ηB,A : hom(GB,A)→ hom(B,FA)
as above; ηB,A(h) = F (h)uB . Then we have already seen that for each fixed
B, A → ηB,A is a natural isomorphism from hom(GB,−) ⇒ hom(B,F−). We
claim that the η’s are natural in the left variable now; that is, for each fixed A,
B → ηB,A is a natural isomorphism from hom(G−, A) ⇒ hom(−, FA). Well,
suppose f : B′ → B in D, then

hom(GB,A)
ηB,A

> hom(B,FA)

hom(GB′, A)

hom(G(f),A)
∨

ηB′,A
> hom(B′, FA)

hom(f,FA)
∨

is commutative, because for all h ∈ hom(GB,A),

hom(f, FA)(ηB,A(h)) = ηB,A(h)f = F (h)uBf

ηB′,A(hom(G(f), A)(h)) = ηB′,A(hG(f)) = F (hG(f))uB′ = F (h)FG(f)uB′

and they are equal because FG(f)uB′ = uBf . Thus η is natural in both vari-
ables separately. This leads to the following definition.

DEFINITION
An adjunction a triple (G,F, η) where F : C→ D, G : D→ C are functors

and η assigns each B ∈ ob(D), A ∈ ob(C) a bijection ηB,A : hom(GB,A) →
hom(B,FA) and is natural in both variables as above. In this case, η is called
the adjugant, G the left adjoint functor and F the right adjoint functor.

We have shown that the functor which sends objects in the codomain category
to their universals — in particular, the functor in Example 12 of Section 3 —
is a left adjoint functor of F . Surprisingly, the converse is true as well:

THEOREM 2.6 Let (G,F, η) be an adjunction, wth F : C→ D, G : D→ C.
Then for every B ∈ ob(D), (GB, ηB,GB(1GB)) is a universal from B to F .

Proof of Theorem 2.6. Let u = ηB,GB(1GB) : B → FGB. Then suppose
A ∈ ob(C) and f : B → FA. We wish to show that there is a unique morphism
h : GB → A such that

B
u
> FGB

FA

F (h)

∨f >

is commutative. To show this, we need only show that ηB,A is precisely the map
h → F (h)u from hom(GB,A) → hom(B,FA), for then the bijectivity of ηB,A
implies that there is a unique h such that f = F (h)u, proving the theorem.
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For each h : GB → A, the following diagram

hom(GB,GB)
ηB,GB

> hom(B,FGB)

hom(GB,A)

hom(GB,h)
∨

ηB,A
> hom(B,FA)

hom(B,F (h))
∨

commutes due to the η’s being natural in the right variable. In particular,
sending 1GB along each pair of arrows yields:

ηB,A(hom(GB, h)(1GB)) = ηB,A(h1GB) = ηB,A(h)

hom(B,F (h))(ηB,GB(1GB)) = hom(B,F (h))(u) = F (h)u

Therefore, ηB,A(h) = F (h)u, and ηB,A sends each h to F (h)u. �

The fact that a left adjoint functor necessarily sends objects to their universals,
makes them unique up to a natural isomorphism.

THEOREM 2.7 Any two left adjoint functors of F are naturally isomorphic.

Proof of Theorem 2.7. Let (G,F, η) and (G′, F, ζ) be adjunctions with F :
C → D, G,G′ : D → C. For B ∈ ob(D) assign uB = ηB,GB(1GB) and vB =
ζB,G′B(1G′B). Then by Theorem 2.6, (GB, uB) and (G′B, vB) are universals
from B to F . Therefore, there is a unique isomorphism σB : GB → G′B such
that vB = F (σB)uB . We claim that σ is a natural isomorphism G ⇒ G′ when
defined this way. To show this, we must show that for all f : B → B′,

GB
σB
> G′B

GB′

G(f)
∨

σB′
> G′B′

G′(f)
∨

is commutative. Applying ηB,G′B′ to both composite arrows,

ηB,G′B′(G′(f)σB) = F (G′(f)σB)uB = FG′(f)F (σB)uB = FG′(f)vB = vB′f

ηB,G′B′(σB′G(f)) = F (σB′G(f))uB = F (σB′)FG(f)uB = F (σB′)uB′f = vB′f

Whence G′(f)σB = σB′G(f) because ηB,G′B′ is a bijection. Therefore, σ is a
natural isomorphism, and G and G′ are naturally isomorphic. �

Everything we have shown dualizes to universals from a functor to an object.
A functor sending objects to those kinds of universals is a right adjoint functor.
We leave the verification of this to the reader.

EXERCISES
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1. Describe the left adjoint functor of:

(a) The identity functor on any category.

(b) A takeoff of varieties.

(c) The functor Set → Set sending every set X to XY , with Y a fixed
set. [Hint : send each X to Y ×X.]

(d) The functor ∆ : C→ CJ in Exercise 1 of Section 6.

(e) The constant functor onto some terminal object in D.

2. Show that for a fixed monoid M , the forgetful functor M−act→ Set has
both a left adjoint and a right adjoint.

3. Let F : C→ D, G : D→ C be functors. Show that the following two are
functors from Dop ×C→ Set.

(a) hom(G−,−), sending (B,A) → hom(GB,A) and (g, f) with g : B →
B′ [that is, g : B′ → B in D] and f : A → A′ the map hom(GB,A) →
hom(GB′, A′) sending h→ fhG(g).

(b) hom(−, F−), sending (B,A) → hom(B,FA) and (g, f) with g : B →
B′ and f : A → A′ the map hom(B,FA) → hom(B′, FA′) sending h →
F (f)hg.

(c) An adjunction is [identifiably] a triple (G,F, η) with η a natural iso-
morphism hom(G−,−)⇒ hom(−, F−).

4. Suppose (G1, F1, η
1) and (G2, F2, η

2) are adjunctions with

F1 : C→ D, G1 : D→ C

F2 : D→ E, G2 : E→ D

ForB ∈ E, A ∈ C, set ηB,A = (η2B,F1A
)(η1G2B,A

). Show that (G1G2, F2F1, η)
is an adjunction.

5. Let (G,F, η) be an adjunction.

(a) For each B ∈ ob(D), assign δB = ηB,GB(1GB) : B → FGB. Then δ is
a natural transformation 1D ⇒ FG. δ is called the unit of the adjunction.

(b) For each A ∈ ob(C), assign εA = η−1FA,A(1FA) : GFA → A. Then
ε is a natural transformation GF ⇒ 1C. ε is called the counit of the
adjunction.

(c) (Fε)(δF ) = 1F and (εG)(Gδ) = 1G, using the notation from Exercise
8 of Section 3. These are summarized as the following being the identity
natural transformations:

F
δF
> FGF

Fε
> F

G
Gδ
> GFG

εG
> G
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(d) Suppose F : C→ D, G : D→ C are any functors, and δ : 1D ⇒ FG
and ε : GF ⇒ 1C are any natural transformations, such that (Fε)(δF ) =
1F and (εG)(Gδ) = 1G. Show that there is a unique adjugant η making
(G,F, η) an adjunction with unit δ and counit ε. Thus adjunctions could
be defined in terms of their units and counits.

6. Every right adjoint functor is continuous, and every left adjoint functor is
cocontinuous.

7. Give necessary and sufficient conditions on an object A in a category C
for hom(A,−) to have a left adjoint functor. [Hint : Exercise 4 of Section
7.]

8. Suppose (G,F, η) is an adjunction with F : C → D, G : D → C, unit δ
and counit ε. Then suppose (G′, F ′, η′) is another adjunction with F ′ :
C′ → D′, G′ : D′ → C′, unit δ′ and counit ε′.

A morphism from (G,F, η) → (G′, F ′, η′) is defined to be pair (K,L)
with K : C → C′ and L : D → D′ functors such that LF = F ′K,
KG = G′L and Lδ = δ′L. [The last condition makes sense because
Lδ : L ⇒ LFG and δ′L : L ⇒ F ′G′L, yet the first two conditions imply
LFG = F ′KG = F ′G′L.]

(a) Given the conditions LF = F ′K and KG = G′L, show that the
following three statements are equivalent and hence any of them could be
the third condition: Lδ = δ′L; Kε = ε′K; the diagram

hom(GB,A)
ηB,A

> hom(B,FA)

hom(G′LB,KA)

KGB,A

∨
η′LB,KA

> hom(LB,F ′KA)

LB,FA

∨

commutes for all A ∈ C, B ∈ D. [By KGB,A, of course, I mean the set map
f → K(f) from hom(GB,A)→ hom(KGB,KA) = hom(G′LB,KA).]

(b) If (K,L) is a morphism (G,F, η) → (G′, F ′, η′) and (K ′, L′) a mor-
phism (G′, F ′, η′)→ (G′′, F ′′, η′′), then (K ′K,L′L) is a morphism (G,Fη)→
(G′′, F ′′, η′′). This induces a composition (K ′, L′) ◦ (K,L) = (K ′K,L′L).

(c) (1C, 1D) is a morphism (G,F, η)→ (G,F, η). Define 1(G,F,η) = (1C, 1D).

(d) Let C be a class of categories. Show that Adj(C) is a category defined
as follows: objects are adjunctions between categories in C, and morphisms
are morphisms of adjunctions.

(e) Establish two canonical functors from Adj(C) to the category of cate-
gories in C with functors as morphisms.
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2.9 - Concrete Categories
Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if
desired.

Recall that the category V(S) has a forgetful functor V(S) → Set, which
is faithful and continuous. This gives better definitions of “injective,” “surjec-
tive,” “subobject,” and “quotient object.” One must be cautious though, about
the fact that objects of V(S) are not identifiably sets. They do have underlying
sets though, and the morphisms are in effect functions of the sets. The func-
tor nature also implies that composition of morphisms and identity morphisms
agree with those of the set maps. These kinds of categories have a special name.

DEFINITION
A concrete category is a pair (C, F ) with C a category and F : C→ Set

a faithful covariant functor. F is called the forgetful functor for C, and for
each A ∈ C, FA is called the underlying set [or carrier] of A.

Since F is faithful, for f : A → B in C the map f → F (f) from hom(A,B) →
hom(FA,FB) is injective. Hence hom(A,B) can be viewed as a subset of
hom(FA,FB) = FBFA. One can therefore say a set map FA→ FB is admit-
ted as a morphism A→ B or not.

EXAMPLES
1. V(S) is a concrete category. It has limits for all diagrams which match

up with Set’s limits because the forgetful functor is continuous. It also has
colimits for all diagrams, but those don’t match up with the colimits in Set.

2. Since there are faithful functors V(S)−sub,V(S)−con → V(S) [see
Exercise 7 of Section 1], composing them with the forgetful functor V(S)→ Set
makes V(S)−sub and V(S)−con concrete categories. This can be generalized;
if C is a concrete category and F : D → C is a faithful functor, D becomes a
concrete category.

3. Consider the functor S : Set× Set→ Set sending (X,Y )→ X ] Y and
(f, g) for f : X → X ′, g : Y → Y ′ the map f ] g : X ]Y → X ′ ]Y ′ which sends
x ∈ X to f(x) and y ∈ Y to g(y). It can be shown that S is faithful [this is left
to the reader]. This makes Set× Set a concrete category.

4. With parts 2 and 3 combined, the product of any two concrete categories
is a concrete category [though one must define it carefully].

If C is a concrete category with forgetful functor F : C→ Set and X is a set, a
universal from X to F is called a free object given by the set X. If every set
X has a free object, then the left adjoint functor of F is called the free-object
giving functor from Set→ C.

For example, for V(S) every set has a free object. But this fails for the
functor S in Example 3 [Exercise 4].
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Subobjects, quotient objects and Cartesian products

For a concrete category (C, F ), one can conveniently define a morphism f in
C injective [surjective] if F (f) is injective [surjective]. Then using the fact
that F is faithful, it follows that injective morphisms are monic and surjective
morphisms are epic. Now call a morphism f bijective if it is both injective and
surjective. Then all isomorphisms are clearly bijective, but not conversely: a
bijective morphism A→ B in C is only an isomorphism if its inverse is admitted
as a morphism B → A.

We now treat objects in concrete categories set theoretically, and introduce
the concept of an subobject / quotient object:

DEFINITION
Let C be a concrete category, A,B objects in C. An injective morphism

ι : B → A is called an embedding provided that whenever f : C → A is a
morphism such that f(C) ⊆ ι(B), the surjectified result f1 satisfying f = ιf1 is
admitted as a morphism C → B. In this case, (B, ι) is called a subobject of A.

A surjective morphism π : A → B is called a quotient map provided that
whenever f : A→ C is a morphism such that kerπ ⊆ ker f , the injectified result
f satisfying f = fπ is admitted as a morphism B → C. In this case, (B, π) is
called a quotient object of A.

At this point, it is convenient to introduce the notion of a structure-based
concrete category. In such a category, elements of an object’s set can be rela-
beled in any way to get a deterministic result.

DEFINITION
Let (C, F ) be a concrete category. Then (C, F ) is structure-based if for

any A ∈ ob(C), set X and bijection σ : FA → X, there is a unique object
A′ ∈ ob(C) such that FA′ = X and σ is an isomorphism in hom(A,A′).

The definition can be rephrased as follows:
1. For any bijection σ : FA → X, there is an object A′ ∈ ob(C) with

FA′ = X and σ admitted as an isomorphism in hom(A,A′);
2. Whenever A,A′ ∈ ob(C) with FA = FA′ and 1A is admitted as an

isomorphism in hom(A,A′), then A and A′ are the same object.
This is because the second of those conditions states the uniqueness of the

object A′. Every concrete category we have mentioned so far is structure-based.
Can you come up with an example of a concrete category that isn’t structure-
based?

Thus in a structure-based concrete category, one can define B to be a subobject
of A [notation B ⊆ A] if FB ⊆ FA and the inclusion map FB ↪→ FA is
in hom(B,A) as an embedding. Any subobject in the sense of the previous
definition turns into one of these. In the next section we deal with only structure-
based concrete categories, and we shall stick to this definition of a subobject.
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Likewise if π : A→ B is a quotient map, the codomain can be changed into
a unique object such that its underlying set is the quotient set A/ kerπ and
the morphism is the canonical epimorphism. We shall form quotient objects by
taking the quotient set from this point.

DEFINITION
Let (C, F ) be a structure-based concrete category, Aα ∈ ob(C). Then a

(Cartesian) product of the Aα’s is an object A such that:
1. FA =

∏
FAα.

2. The projection maps pα :
∏
FAα → FAα are admitted in hom(A,Aα).

3. Whenever B is an object in ob(C) and fα : B → Aα, the coordinate map
f : FB →

∏
FAα satisfying pαf = fα is admitted in hom(B,A).

It is clear that a Cartesian product of objects is a product in the categorical
sense. It follows that since C is structure-based, the object A is unique, and
can be referred to as the Cartesian product of the Aα’s.

The striking controversy is that “product” in a concrete category could refer
to either the categorial product or the Cartesian product. In the next section,
it will always mean the latter.

EXERCISES

1. Let (C, F ) and (C′, F ′) be concrete categories. Define a takeoff C→ C′

to be a functor T : C→ C′ such that F ′T = F .

(a) Takeoffs are always faithful.

(b) The concrete categories with takeoffs as morphisms form a category.
[Assume hom-sets are allowed to be proper classes in this occasion.]

(c) A takeoff of varieties coincides with a takeoff of the concrete categories.

(d) Informally, what can you say about takeoffs?

2. Let P be the functor Set × Set → Set sending (X,Y ) → X × Y . [See
Exercise 7 of Section 4.] Is P faithful? [Hint : Consider where P sends
hom((Z, ∅), (Z, ∅)).]

3. Define a congruence relation Φ on a category C as follows:

(1) For each A,B ∈ ob(C), an equivalence relation ΦA,B on hom(A,B) is
equipped.

(2) Whenever f, f ′ ∈ hom(A,B), g, g′ ∈ hom(B,C), fΦA,Bf
′ and gΦB,Cg

′,
then gfΦA,Cg

′f ′.

(a) Define a new category C/Φ by assigning ob(C/Φ) = ob(C) and
homC/Φ(A,B) = homC(A,B)/ΦA,B . For f ∈ homC/Φ(A,B), g ∈ homC/Φ(B,C),

set gf = gf . Then set 1A = 1A ∈ homC/Φ(A,A). Explain why this is
well-defined, and show that C/Φ is a category. It is called the quotient
category of C by Φ.
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(b) π : C → C/Φ defined by πA = A, π(f) = f is a full functor which is
bijective on the objects.

(c) Let F : C → D be a functor [assumed covariant]. Define ΘA,B to
be the relation {(f, g) ∈ hom(A,B)2 | F (f) = F (g)}; show that Θ is a
congruence relation on C when defined that way.

(d) If π : C → C/Θ is defined as in part (b), there is a unique faithful
functor F : C/Θ → D such that F = Fπ. [Hint : This is similar to
Theorem 1.10 in Chapter 1.]

(e) Now explain how to make C a concrete category given any functor
C→ Set.

4. Let S be the functor in Example 3, sending a pair of sets to its disjoint
union, and making Set×Set a concrete category. If X is a set, free object
given by X would be a pair of sets (A,B) and a function i : X → A ] B
such that whenever f : X → A′ ] B′ is a function, there are unique
functions a : A → A′, b : B → B′ such that f = (a ] b)i. For X = ∅,
obviously (∅, ∅) works. However, if X 6= ∅ show that no such pair of sets
exists. [Hint : Pick an element of X and consider what parts of the disjoint
unions i and f send them to.]

5. If a structure-based concrete category contains at least one nonempty set
as an object, then it is not small.
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2.10 - Algebraic Categories

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if
desired.

Note: In this section, if A is an object of a structure-based concrete category
and B is a subset of A’s set, then B is said to be admitted as a subobject of
A if there exists an object whose set is B such that hom(B,A) contains the
inclusion map B ↪→ A as an embedding. This object is seen to be unique due to
the category being structure-based. Likewise, if Φ is an equivalence relation on
A, A/Φ is said to be admitted as a quotient object of A if there exists an object
whose set is A/Φ such that hom(A,A/Φ) admits the quotient map A→ A/Φ.

Recall from the previous section that that V(S) is a structure-based concrete
category. However, it is more than just that, and we shall find a somewhat
nonconstructive description of V(S). Some properties of V(S) that don’t hold
in an arbitrary structure-based concrete category are:

1. For every set there is a free object.
2. Products exist for any batch of objects.
3. If f : A → B is any morphism, the category admits the quotient object

A/ ker f , the subobject f(A) of B and an isomorphism σ : A/ ker f → B such
that

A
π
> A/ ker f

σ
> f(A)

ι
> B

is equal to f , with π and ι the canonical maps.
4. If Φ ⊆ A × A is an equivalence relation on A which is a subobject of

A×A, then the quotient set A/Φ is admitted as a quotient object of A.
5. (Finitary axiom) If {Aα} is a batch of subobjects of A which is directed,

[meaning for all Aα, Aβ in the batch there exists Aγ in the batch such that
Aα ⊆ Aγ and Aβ ⊆ Aγ ], the union

⋃
Aα is a subobject.

A structure-based concrete category C satisfying rules 1-5 above is called a
finitary algebraic category. If C satisfies rules 1-4 but not necessarily 5, C
is just called an algebraic category. See Exercise 1 for an example.

Thus V(S) is a finitary algebraic category. In this section we show that
every finitary algebraic category is of this form.

THEOREM 2.8 Every finitary algebraic category C is the category V(S) given
by some variety V(S) in universal algebra.

Proof of Theorem 2.8 Let C be a finitary algebraic category. First note that
property 3 implies that in C, all injective morphisms are embeddings, and all
surjective morphisms are quotient maps.
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We proceed to define a signature Ω by letting Ω(n), for each n ≥ 0, be the set
Fn underlying the free object given by the n-element set In = {x1, x2, . . . , xn}.
Identify x1, x2, . . . , xn with their images in the injection map In → Fn. We
then give each object A an Ω-algebra structure as follows. For each ω ∈
Ω(n), a1, a2, . . . , an ∈ A, ω is an element of Fn. Define (ωa1a2 . . . an) to be
f(ω) where f is the unique morphism Fn → A extending the set map xi → ai
from In → A. The reader should take some time to understand the case when
n = 0.

Now each object of C is an Ω-algebra. We must prove two things to complete
the proof:

(1) The morphisms between two objects of C are precisely the homomor-
phisms [i.e., operation-preserving maps] between the algebras.

(2) The class of Ω-algebras is a variety.
It will follow that C is the category given by a variety.
To prove (1), let A,B ∈ C. Suppose f : A → B is a morphism in C.

Then take ω ∈ Ω(n), a1, a2, . . . , an ∈ A. We must show that f(ωa1a2 . . . an) =
(ωf(a1)f(a2) . . . f(an)). Let ψA be the map xi → ai from In → A, and ψB
be the map xi → f(ai) from In → B. Then ψA and ψB extend to unique
morphisms ϕA : Fn → A,ϕB : Fn → B. By definition of the Ω-structures on
the objects in C,

ϕA(ω) = (ωa1a2 . . . an)

ϕB(ω) = (ωf(a1)f(a2) . . . f(an))

Now, ϕB is the unique morphism Fn → B sending each xi → f(ai). It is easy
to see that fϕA also satisfies this, whence fϕA = ϕB by uniqueness. Applying
these equal morphisms to ω [the element of Fn] yields the desired statement.

Conversely, suppose f : A→ B is a homomorphism of the Ω-algebras. Now
let FA be the free object given by A, then the set map f extends to a unique
morphism η : FA → B in C, and the identity map A→ A extends to a unique
morphism ε : FA → A. Evidently ε is surjective because it is the retraction of
a set map. We claim that η = fε : FA → B. From that it will follow that
ker ε ⊆ ker η, and therefore, since ε is a quotient map [see the first paragraph of
the proof], the injectified result, f , is admitted in C.

Take any a ∈ FA. By Exercise 4(c), a ∈ FA′ for some finite subset A′ of
A. Label the elements of A′ as {a1, a2, . . . , an}, where n = |A′|. Then there
is an bijection Fn → FA′ sending xi → ai, and a gets mapped to by some
ω ∈ Fn = Ω(n). By definition a = (ωa1a2 . . . an) [the expression in FA, not its
evaluation in A]. Since η sends elements of A to where f sends them,

η(a) = (ωf(a1)f(a2) . . . f(an))

ε(a) = (ωa1a2 . . . an)

where the latter expression is the actual evaluation in the algebra A, and
the former is the evaluation in the algebra B. The hypothesized statement
f(ωa1a2 . . . an) = (ωf(a1)f(a2) . . . f(an)) implies that η(a) = fε(a). This holds
for all a ∈ FA, thus η = fε.
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Now that we have (1) proved, we must show (2). To show that the class is a
variety, by Theorem 1.26 it suffices to show that it is closed under subalgebras,
homomorphic images and products, and contains T (Ω).

To show closure under subalgebras, let A be an algebra in C, and B be a
subalgebra of A, in the sense that it is closed under the operations. Then if FB
is the free object given by the set B, the inclusion B ↪→ A extends to a unique
homomorphism f : FB → A. We claim that the image of f is B, so that property
3 implies B is a subobject of A. Clearly each b ∈ B is f applied to the primitive
expression b, so B ⊆ im f . Now suppose w ∈ FB . Then w ∈ FB′ for some finite
subset B′ of B. Assume B′ is labeled {b1, b2, . . . , bn}; then there is an bijection
Fn → FB′ sending xi → bi, and w gets mapped to by some ω ∈ Fn = Ω(n). By
definition of the Ω-structures, w is the expression (ωb1b2 . . . bn). Consequently,
f(w) = (ωb1b2 . . . bn), the evaluation of the expression. Since B is a subalgebra
of A and b1, b2, . . . bn ∈ B, f(w) ∈ B follows, and im f ⊆ B so that im f = B.

Closure under homomorphic images follows immediately from property 4
[and the fact that C is structure-based]. Recall the first and foremost definition
of a congruence relation given in Section 1.4.

Closure under products follows from property 2. In particular, the empty
batch consisting of no objects has a product of C, and hence T (Ω) is in C. This
completes the proof that C is the category for a variety. �

At this point it is natural to ask if any of the above 5 properties are redundant.
It turns out if C follows properties 1, 3, 4, 5 but not necessarily 2, it can be
proved to be a variety. This is more difficult, though; see Exercise 5.

However, Exercises 1-3 show that none of properties 3, 4, 5 are redundant;
there are structure-based concrete categories satisfying any two of those but not
the third, as well as satisfying properties 1 and 2.

EXERCISES

1. Here is an example of an algebraic category which is not finitary. Define
a complete join-semilattice to be a partially ordered set X such that
every subset has a least upper bound. For example, the closed interval
[0, 1] ⊆ R is a complete join-semilattice [due to the least upper bound
property]. However, R is not a complete join-semilattice, because Z ⊆ R
has no least upper bound.

(a) For each subset S of X, let U(S) be the least upper bound of S. Show
that U(∅) and U(X) are smallest and largest elements of X, respectively.

(b) Then prove that for x ∈ X, U({x}) = x and for a set {Sα} of subsets,
U(

⋃
Sα) = U({U(Sα)}).

(c) Define a homomorphism of complete join-semilattices X,Y to be a
map f : X → Y such that for every subset S of X, f(U(S)) = U(f(S)).
The complete join-semilattices and homomorphisms then form a structure-
based concrete category. Show that this is an algebraic category which
is not finitary. [Hint : For any set Z, P(Z) is a complete join-semilattice
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under inclusion. Show that along with i : Z → P(Z) sending i(z) = {z},
it is a free object given by Z.]

2. If X and Y are partially ordered sets, define a map f : X → Y to be
order-preserving if x ≤ y in X implies f(x) ≤ f(y) in Y . Then the
category of posets with order-preserving maps satisfies properties 1, 2, 4
and 5 in the definition of a finitary algebraic category, but not property
3. [Hint : The free object given by a set X is the poset X where x ≤ y
means x = y.]

3. Define a torsion-free abelian group to be an abelian group in which
every element except the identity has infinite order. Show that the full
subcategory of Ab consisting of the torsion-free abelian groups satisfies
properties 1, 2, 3 and 5 in the definition of a finitary algebraic category,
but not property 4.

4. Let C be a finitary algebraic category. Do not use Theorem 2.8 to prove
the following statements, because they are used in the proof of that theo-
rem.

(a) For any set X, let FX be the free object given by X. If X ′ is a finite
subset of X, explain why there is a unique morphism FX′ → FX extending
the inclusion map X ′ ↪→ X.

(b) Show that this morphism is injective, and identify elements of FX′

with their images in FX . Then FX′ is a subobject of FX .

(c) For each a ∈ FX , there exists a finite subset X ′ of X such that a ∈ FX′ .
[This is the primary statement using property 5!]

5. Let C be a structure-based concrete category satisfying properties 1, 3, 4
and 5 in the definition of a finitary algebraic category.

(a) Apply Theorem 2.8 to show that C is a class of Ω-algebras for some
signature Ω, with all homomorphisms between them.

(b) Show that the free objects all satisfy the same equational identities in
their generating symbols.

(c) Now show that C is the variety of Ω-algebras satisfying those identities.
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2.11 - Monads

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if
desired.

Recall what expressions are in universal algebra. They comprise the free
algebras, and are the most “abstract” way to apply operations to arbitrary
symbols. The three fundamental things about an expression are that:

(1) Each symbol is in some way a primitive expression.
(2) An expression of expressions can be “flattened” into a great expression.
(3) Symbol substitutions can be made anywhere in the expressions.
And there are two additional facts of coherence:
(4) Given an expression of expressions of expressions [triple-layer!], it doesn’t

make a difference whether you flatten them starting from the inner layers or the
outer layers.

(5) A primitive expression consisting of one expression flattens into the ex-
pression, and flattening an expression of primitive expressions yields the same
expression with the symbols.

To see what those statements mean, let V(S) be a variety, then define T :
Set→ Set as follows. For each set X, define TX to be the set FS(Ω, X). Then
every set map f : X → Y yields a unique homomorphism ϕ : FS(Ω, X) →
FS(Ω, Y ) such that

X
f

> Y

FS(Ω, X)

iX
∨

ϕ
> FS(Ω, Y )

iY
∨

is commutative, so define T (f) to be ϕ regarded as a set map. It is clear
then that T is a functor. T (f) does the job of “substituting symbols” in each
expression in X, by where the map f sends them to Y .

Now for each X, let ηX = iX : X → TX. The above diagram and how T
is defined immediately implies that η is a natural transformation 1Set ⇒ T . η
is the device which “sees each symbol as a primite expression,” sending each
element of X to the length-one expression in FS(Ω, X).

Next, notice that if A is a V(S)-algebra, the identity map 1A : A→ A, where
the first A is regarded as a set and the second as an algebra, extends to a unique
homomorphism eA : FS(Ω, A)→ A. It is called the evaluation map of A and
assigns every expression in A to the value A gives it. It is clear that for every
homomorphism f : A→ B,

FS(Ω, A)
T (f)
> FS(Ω, B)

A

eA
∨

f
> B

eB
∨
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is commutative due to f being a homomorphism.
Since the above holds for any algebras A and B and homomorphism f , it

holds if A = FS(Ω, X), B = FS(Ω, Y ) and f is the homomorphism ϕ mentioned
above. It follows that if each µX is assigned to be eFS(Ω,X) : FS(Ω, FS(Ω, X))→
FS(Ω, X), µ is a natural transformation TT ⇒ T . µ is the device which takes
each expression of expressions, and evaluates the expression in the free algebra,
thus “flattening” the expression into one great expression.

Thus we have a triple (T, η, µ) where η devices fact (1) about an expression,
µ devices fact (2), and the functorial nature of T devices fact (3). [Here’s a nice
little exercise: informally, what does the naturality of η and µ say about the
expressions?]

Now, note that for any algebra A, the fact that eA is a homomorphism
implies that

TTA
T (eA)

> TA

TA

eTA

∨
eA

> A

eA
∨

is commutative. Taking TX for A and noting that µX = eTX , the diagram
becomes

TTTX
T (µX)

> TTX

TTX

µTX

∨
µX

> TX

µX

∨

This means µXT (µX) = µXµTX for every setX; that is, the coherence condition
µ(Tµ) = µ(µT ) holds, using the notation from Exercise 8 of Section 3. This
is an associativity law for expression flattening: an expression of expressions of
expressions has one unique flatten into an expression of the symbols.

It is also clear that eAηA = 1A for any algebra A, because eA extends 1A
using the universal property. Taking TX for A, this becomes µXηTX = 1TX
for every set X; that is, µ(ηT ) = 1T . Also, since T (ηX) : TX → TTX and
µX : TTX → TX are both homomorphisms, so is µXT (ηX) : TX → TX.
Because µXT (ηX) clearly sends every symbol in X to itself, µXT (ηX) = 1TX ,
so that also µ(Tη) = 1T .

The statement µ(Tµ) = µ(µT ) mathematically states fact (4) and µ(Tη) =
1T = µ(ηT ) states fact (5).

All of this leads to the following definition, which enables “expressions” to
be natured on objects of an arbitrary category.

DEFINITION
A monad is a triple (T, η, µ) where T : C→ C is a functor and η : 1C ⇒ T

and µ : TT ⇒ T are natural transformations, such that µ(Tµ) = µ(µT ) and
µ(Tη) = 1T = µ(ηT ). η is called the unit of the monad, and µ is called its
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operator.

EXAMPLES
1. We have shown above that any variety V(S) in universal algebra induces

a monad (T, η, µ) on Set such that TX = FS(Ω, X) for every set X. In general,
for any takeoff from V(S1) to V(S2), there is a monad (T, η, µ) on V(S2) which
sends every V(S2)-algebra to the universal enveloping V(S1)-algebra, rasterized
as a V(S2)-algebra. η assigns each B ∈ V(S2) the usual inclusion homomor-
phism B → TB given by the universal, and µ assigns each B to the evaluation
retraction [see Exercise 4 of Section 3] rTB : TTB → TB in V(S1), induced by
the universal enveloping the rasterized V(S1)-algebra TB.

2. Let M be a fixed monoid. Then M induces a monad (T, η, µ) on Set as
follows: Define TX = M ×X and for each f : X → Y , assign T (f) : TX → TY
to send (m,x)→ (m, f(x)). Then let η and µ be given by the monoid structure
of M ; that is, ηX : X → TX sends x → (1, x) and µX : TTX → TX sends
(m, (n, x)) → (mn, x). The naturality of η and µ is clear, and the coherence
conditions [e.g. µ(Tµ) = µ(µT )] follow from the associativity and unit laws
of the monoid. This seemingly basic example is the special case of Example 1
where V(S) is the variety of M -actions.

3. Define a monad (T, η, µ) on Set by assigning TX = P(X) and T (f) :
X → Y the map giving the image of a subset. Then assign ηX : X → TX to
send each x ∈ X to the one-element subset {x}, and assign µX : TTX → TX
to send each set of subsets of X to their union. It is not hard to show that this
defines a monad.

An interesting thing about a monad is that every adjunction yields a monad and
vice versa. Throughout this section, we will use the definition of an adjunction
in terms of its unit and counit [see Exercise 5 of Section 8]. That is:

I. Functors F : C→ D, G : D→ C
II. Natural transformations δ : 1D ⇒ FG, ε : GF ⇒ 1C
III. (Fε)(δF ) = 1F and (εG)(Gδ) = 1G
Recall the identities in Exercise 8(c) of Section 3; they will be very useful

here. The following result is yielded.

THEOREM 2.9 Let (G,F, δ, ε) be an adjunction with F : C→ D, G : D→ C,
unit δ and counit ε. Then (FG, δ, F εG) is a monad on the category D.

Taking the adjunction given by a takeoff and its universal, for instance, gives
us Example 1 above.

Proof of Theorem 2.9. Clearly, T = FG : D→ D so that makes sense. η = δ is
a natural transformation 1D ⇒ FG, hence a natural transformation 1D ⇒ T .
Since ε : GF ⇒ 1C, µ = FεG : F (GF )G⇒ F1CG; that is, µ : FGFG⇒ FG, so
µ is a natural transformation TT ⇒ T . We now prove the coherence conditions:

µ(Tµ) = (FεG)[(FG)(FεG)] = (FεG)(FGFεG) = F [ε(GFε)]G
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µ(µT ) = (FεG)[(FεG)(FG)] = (FεG)(FεGFG) = F [ε(εGF )]G

Yet ε(GFε) = ε(εGF ) by Exercise 8(e) of Section 3, with GF in place of F and
G, 1C in place of F ′ and G′ and ε in place of ζ and η. Therefore, µ(Tµ) = µ(µT ).

To show that µ(Tη) = 1T = µ(ηT ):

µ(Tη) = (FεG)(FGδ) = F [(εG)(Gδ)] = F1G = 1FG = 1T

µ(ηT ) = (FεG)(δFG) = [(Fε)(δF )]G = 1FG = 1FG = 1T

This completes the proof of the theorem. �

The Eilenberg-Moore category

You probably suspected that once expressions are defined, there’s a general
way to give an object “expression assignments” to make it an algebra. There
certainly is. Also, there is a way to say a morphism of objects “preserves” the
expression assignments. We now make this rigorous.

Recall the evaluation map eA : FS(Ω, A) → A for A ∈ V(S). If iA : A →
FS(Ω, A) is the inclusion map, then eAiA = 1A, because eA extends the set
map 1A. This illustrates that eA assigns primitive expressions to their symbols,
which is genuinely required of an expression evaluation.

Another important thing about eA is that if you have an expression of ex-
pressions in A, evaluating all the inner expressions then evaluating the result-
ing expression of symbols gives the same result as flattening the expression
and then evaluating. This is, in effect, illustrated by the fact that eA is a
homomorphism. In symbols, eAeFS(Ω,A) = eAẽA, where ẽA is the homomor-
phism FS(Ω, FS(Ω, A)) → FS(Ω, A) extending the set map iAeA : FS(Ω, A) →
FS(Ω, A).

Now consider the evaluation homomorphisms of two algebras, eA : FS(Ω, A)→
A and eB : FS(Ω, B)→ B. If f : A→ B is any function of the sets, iBf : A→
FS(Ω, B), has a unique extension to a homomorphism f̃ : FS(Ω, A)→ FS(Ω, B),
and this f̃ makes the diagram

A
f

> B

FS(Ω, A)

iA
∨

f̃
> FS(Ω, B)

iB
∨

commutative. We claim that f is a homomorphism if and only if this diagram

FS(Ω, A)
f̃
> FS(Ω, B)

A

eA
∨

f
> B

eB
∨

is commutative. For, if the diagram is commutative, f is the result of in-
jectifying the homomorphism eB f̃ over the quotient map eA, and is there-
fore a homomorphism. Conversely, if f is a homomorphism, then for all ω ∈
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Ω(n), a1, a2, . . . , an ∈ A,

eB f̃(ωa1a2 . . . an) = eB(ωf(a1)f(a2) . . . f(an)) = (ωf(a1)f(a2) . . . f(an))

= eB(ωf(a1)f(a2) . . . f(an)) = eB f̃(ωa1a2 . . . an)

where the ω’s give the unevaluated expression in the free algebra given by the set.
It follows that ker eA ⊆ ker(eB f̃) and that the injectification of eB f̃ = geA for
some homomorphism g. Then, g = g1A = geAiA = eB f̃ iA = eBiBf = 1Bf = f
so g = f and the statement of the diagram, eB f̃ = feA holds.

To get a better understanding, note that one pair of arrows in the above
diagram sends all the symbols in the expression over the map f , then evaluates
the resulting expression, whereas the other pair evaluates the expression then
sends it over f . The virtue of f being a homomorphism is that there’s no
difference between those.

We now define the Eilenberg-Moore category.

DEFINITION
Let (T, η, µ) be a monad. An algebra for (T, η, µ) is a pair (A, eA) with

A ∈ ob(C), eA : TA→ A such that eAηA = 1A and eAµA = eAT (eA):

TA TTA
T (eA)

> TA

A
1A
>

ηA

>

A

eA

>

TA

µA

∨
eA

> A

eA
∨

If (A, eA) and (B, eB) are algebras for (T, η, µ), an algebra morphism f :
(A, eA)→ (B, eB) is a morphism f : A→ B in C satisfying eBT (f) = feA:

TA
T (f)
> TB

A

eA
∨

f
> B

eB
∨

The Eilenberg-Moore category given by the monad is defined to be the cate-
gory of algebras whose morphisms are algebra morphisms, with the usual com-
position and identity morphisms. This category is denoted CT .

It is immediate that for any X ∈ ob(C), (TX, µX) is an algebra, and if (A, eA)
is an algebra, then eA : (TA, µA) → (A, eA) is an algebra morphism. Also, for
any morphism f : X → Y , T (f) is an algebra morphism (TX, µX)→ (TY, µY )
because of the naturality of µ.

EXAMPLES
1. Let (T, η, µ) be the monad on Set given by a variety V(S). We have

seen that a V(S) algebra A, along with its evaluation homomorphism eA :
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FS(Ω, A)→ A, is an algebra for (T, η, µ). Conversely, any algebra for the monad
is a V(S) algebra in a clean, deterministic way. Also, algebra morphisms are
simply homomorphisms in V(S), making the Eilenberg-Moore category identi-
fiably V(S).

2. Let (T, η, µ) be the monad on Set with TX = P(X) as in Example
3. We wish to find its Eilenberg-Moore category. To begin with, an algebra
for (T, η, µ) is a set A with a map eA : P(A) → A such that eAηA = 1A and
eAµA = eAT (eA). Using the definition of η and µ for this monad, this says
eA({a}) = a for a ∈ A and eA(

⋃
Sα) = eA({eA(Sα)}) for subsets Sα of X.

If a, b ∈ A, define a ≤ b to mean eA({a, b}) = b. We claim that A is
a complete join-semilattice with eA giving the least upper bound of any set.
eA({a, a}) = e({a}) = a, so a ≤ a, proving reflexivity. If a ≤ b and b ≤ a, then
eA({a, b}) is simultaneously a and b, whence a = b, proving antisymmetry. Now
suppose a ≤ b and b ≤ c. Then eA({a, b}) = b and eA({b, c}) = c. Consequently,

eA({a, c})
= eA({ eA({a}), eA({b, c}) }) (because eA({a}) = a and eA({b, c}) = c)

= eA({a} ∪ {b, c}) (because eA({eA(Sα)}) = eA(
⋃
Sα))

= eA({a, b, c})
= eA({a, b} ∪ {c})

= eA({ eA({a, b}), eA({c}) }) (because eA({eA(Sα)}) = eA(
⋃
Sα))

= eA({b, c}) (because eA({a, b}) = b and eA({c}) = c)
= c.

Therefore, eA({a, c}) = c and a ≤ c, proving transitivity. Hence (A,≤) is a
poset. Now we show that for any subset X, eA(X) is the least upper bound
of X. Suppose x ∈ X; then eA({x, eA(X)}) = eA({ eA({x}), eA(X) }) =
eA({x} ∪X) = eA(X), proving that x ≤ eA(X). Therefore eA(X) is an upper
bound of X. Now suppose y is any upper bound of X. If X 6= ∅, then set theory
shows

X ∪ {y} =
⋃
x∈X
{x, y}

So eA({eA(X), y}) = eA({ eA(X), eA({y}) }) = eA(X∪{y}) = eA(
⋃
x∈X{x, y}) =

eA({eA({x, y}) | x ∈ X}). Since y is an upper bound of X, every x ∈ X satisfies
x ≤ y so that eA({x, y}) = y. Furthermore, eA({eA({x, y}) | x ∈ X}) = eA({y |
x ∈ X}) = eA({y}) = y. If X = ∅, then eA({eA(X), y}) = eA(X ∪ {y}) =
eA({y}) = y. Thus eA({eA(X), y}) = y, which means that eA(X) ≤ y and
eA(X) is the least upper bound of X.

This proves that any algebra A for the monad is a complete join-semilattice,
which eA giving the least upper bound. Exercise 1 of Section 10 shows the
converse: if A is a complete join-semilattice and eA : P(A)→ A gives the least
upper bound, then eA({a}) = a and eA(

⋃
Sα) = eA({eA(Sα)}); therefore, A is

an algebra for the monad. It is then clear that morphisms are complete join-
semilattice homomorphisms, and that the Eilenberg-Moore Category of (T, η, µ)
is the category of complete join-semilattices.

We now show one way to get an adjunction from any monad; Exercise 5 shows

6



another way.

THEOREM 2.10 Let (T, η, µ) be a monad on C, and let CT be its Eilenberg-
Moore category. Define F,G, δ, ε as follows:

F : CT → C sends an algebra (A, eA) → A and a morphism h : (A, eA) →
(B, eB) to the morphism h : A→ B in C.

G : C→ CT sends an object X → (TX, µX) and a morphism f : X → Y to
the morphism T (f) : TX → TY of CT .

For each X ∈ ob(C), δX : X → FGX is assigned to be ηX : X → TX.
For each (A, eA) ∈ CT , εA : GFA → A is assigned to be eA : (TA, µA) →

(A, eA).
Then δ : 1C ⇒ FG and ε : GF ⇒ 1CT are natural transformations and G,F

are adjoint functors with unit δ and counit ε.

Proof of Theorem 2.10. Notice that FG is the functor T , and that δ is the same
as η. Therefore, δ is a natural transformation. The naturality of ε follows from
the definition of a morphism in CT . It suffices to show that (Fε)(δF ) = 1F and
(εG)(Gδ) = 1G, then we have an adjunction.

Take each (A, eA) ∈ ob(CT ). Then [(Fε)(δF )]A = F (εA)δFA = eAηFA =
1FA, because FA is simply A without its eA equipment. Therefore, (Fε)(δF ) =
1F .

Now take eachX ∈ ob(C). Then [(εG)(Gδ)]X = εGXG(δX) = ε(TX,µX)G(ηX) =
µXT (ηX) = [µ(Tη)]X = (1T )X = 1TX = 1GX . Hence (εG)(Gδ) = 1G. �

EXERCISES

1. Let C be the category of complete join-semilattices [Exercise 1 of Section
10], F : C → Set the forgetful functor and G : Set → C the free-object
giving functor. Then G and F are adjoint functors. Show that the monad
induced by them in Theorem 2.9 is the monad on Set in Example 3.

2. A closure operator on a poset X is a function C : X → X satisfying
the following laws for all x, y ∈ X:

Extension: x ≤ C(x);

Idempotence: C(C(x)) = C(x);

Monotonic Increase: If x ≤ y, then C(x) ≤ C(y).

For example, if A ∈ V(S), “subalgebra generated by” and “congruence
relation generated by” are closure operators on P(A) and P(A × A), re-
spectively.

Show that if X is regarded as a category with at most one morphism in
each hom-set [see Example 7 of Section 1], a monad on X is identifiably
a closure operator.

3. A comonad on a category C is a triple (T, η, µ) with η : T ⇒ 1C, µ : T ⇒
TT natural transformations, such that (Tµ)µ = (µT )µ and (Tη)µ = 1T =
(ηT )µ hold.
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(a) A comonad on C is identifiably a monad on Cop.

(b) Let (G,F, δ, ε) be an adjunction with F : C → D, G : D → C, unit δ
and counit ε. Then (GF, ε,GδF ) is a comonad on C.

(c) Use part (b) to obtain a comonad on V(S).

4. (a) If you start with a monad, take its induced adjunction in Theorem
2.10 involving the Eilenberg-Moore category, then take the adjunction’s
induced monad in Theorem 2.9, show that you have the same monad you
started with.

(b) If you start with an adjunction, take its induced monad [Theorem 2.9]
and then the resulting adjunction [Theorem 2.10], then you don’t neces-
sarily arrive at the same adjunction you started with up to equivalence.

If the adjunction’s “typical” enough that you would revisit the same
adjunction when doing this, the adjunction is said to be monadic [or
tripleable].

(c) Prove that the adjunction given by a takeoff is monadic. [It is best to
start off with takeoffs from a variety to the sets.]

5. Let (T, η, µ) be a monad on C, and CT be its Eilenberg-Moore category.
Define a new category CT by ob(CT ) = ob(C) and for X,Y ∈ ob(CT ),
homCT

(X,Y ) = homCT ((TX, µX), (TY, µY )). Define composition of mor-
phisms and identity morphisms to agree with CT . Then CT is called the
Kleisli category for the monad.

(a) Show that there is a bijection between homCT
(X,Y ) and homC(X,TY )

for all X,Y ∈ ob(C). [Hint : If f ∈ homCT ((TX, µX), (TY, µY )), consider
fηX : X → TY . The other way around, for each g : X → TY , show that
µY T (g) is in CT .]

(b) Define F,G, δ, ε as follows:

F : CT → C sends each X ∈ ob(CT ) to TX, and each f ∈ homCT
(X,Y )

to f itself as a morphism TX → TY .

G : C → CT sends each X ∈ ob(C) to X regarded as an object in CT ,
and each f ∈ homC(X,Y ) to T (f) : TX → TY in homCT

(X,Y ).

For each X ∈ ob(C), δX : X → FGX is assigned to be ηX : X → TX.

For each Y ∈ ob(CT ), εY : GFY → Y is assigned to be µY ∈ homCT
(TY, Y ).

Show that δ and ε are natural transformations, and that G and F are
adjoint functors with unit δ and counit ε.

(c) Prove or disprove: If you use Theorem 2.9 to turn this adjunction into
a monad on C, you necessarily get the same monad you started with.

6. Let (G,F, δ, ε) be an adjunction with F : C→ D, G : D→ C, unit δ and
counit ε. Then let (T, η, µ) be the monad on D induced by Theorem 2.9;
that is, (FG, δ, F εG).
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(a) For each A ∈ C, (FA,F (εA)) is an algebra for (T, η, µ).

(b) For each f : A→ A′ in C, F (f) is an algebra morphism (FA,F (εA))→
(FA′, F (εA′)).

(c) Now suppose (G′, F ′, δ′, ε′) is the adjunction between DT ,D estab-
lished in Theorem 2.10. Show that there is a unique functor E : C→ DT

such that F = F ′E and EG = G′. Also note that δ = δ′ because both are
equal to η.

(d) Suppose now that (G′, F ′, δ′, ε′) is the adjunction between the Kleisli
category DT and D in Exercise 5. Define K : DT → C by KB = GB
for B ∈ ob(DT ) [= ob(D)], and K(f) = εGB′G(fηB) for morphisms
f ∈ homDT (TB, TB′) [= homDT

(B,B′)]. Then K is the unique functor
DT → C such that F ′ = FK and KG′ = G.

7. Suppose (T, η, µ) is a monad on a category D. Define a category Adj(D, T )
as follows:

(1) Objects are adjunctions (G,F, δ, ε) with F : C→ D, G : D→ C where
C is any category, and the induced monad (FG, δ, F εG) is the given monad
(T, η, µ).

(2) Morphisms are morphisms of adjunctions [see Exercise 8 of Section 8]
which are the identity on 1D.

(a) Verify that this is indeed a category.

(b) The adjunction involving the Eilenberg-Moore category [Theorem 2.10]
is a terminal object. [Hint : Use Exercise 6.]

(c) The adjunction involving the Kleisli category [Exercise 5] is an initial
object.
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2.12 - Monads on Set

Nicholas McConnell

(Categories)

The material and exposition for this lesson follows an imaginary textbook on
Dozzie Abstract Algebra.

This section is not a prerequisite of any other and may be skipped if
desired.

In Section 10, we classified algebraic categories, and showed that each one
is isomorphic to some variety in universal algebra. In this section we will do
something surprisingly easier: we will take an arbitrary monad (T, η, µ) on
the category Set, and show that it is the monad sending X → FS(Ω, X) for
some variety V(S). This, in effect, associates any adjunction (G,F, η) with
F : C→ Set with a monadic adjunction involving a variety.

There is one obstacle of this, though: the variety might have infinitary oper-
ations if we are not careful. For example, the least upper bound in a complete
join-semilattice is infinitary — it allows infinitely many operands at once. We
have always assumed varieties consist of finitary operations, so we must first
define a condition on the monad.

DEFINITION A monad (T, η, µ) on Set is said to be finitary provided that
whenever X is a set and w ∈ TX, there exists a finite subset X ′ of X such that
if ι : X ′ → X is the inclusion map, then T (ι) : TX ′ → TX has w in its image.

This statement says that any expression in TX uses only finitely many symbols.
Thus it guarantees the “finiteness” of expressions and operators, and is related
to Lemma 1.20 in the previous chapter. We now state and prove our theorem.

THEOREM 2.11 If (T, η, µ) is a finitary monad on Set, then there exists a
variety V(S) such that (T, η, µ) is the monad sending X → FS(Ω, X), in Exam-
ple 1 of Section 11.

(The theorem also holds if the monad is not finitary, but then there would be
infinitary operators in V(S), which is beyond our course.)

Proof of Theorem 2.11. First we define a universal-algebra signature Ω. For
each n ≥ 0, set Ω(n) = T{x1, x2, . . . , xn}. In particular, Ω(0) = T∅.

Now, for each set X we form the following Ω-algebra structure on TX: For
ω ∈ Ω(n), a1, a2, . . . , an ∈ TX, let ϕ be the map xi → ai from {x1, x2, . . . , xn} →
TX. Then µXT (ϕ) goes from Ω(n)→ TX; define (ωa1a2 . . . an) = µXT (ϕ)(ω).
In particular, if n = 0, let ϕ be the unique map ∅ → TX and define (ωTX) =
µXT (ϕ)(ω). We thus have made each TX into an Ω-algebra. It is evident that if
ω ∈ Ω(n) then (ωηX(x1)ηX(x2) . . . ηX(xn)) is the element ω of T{x1, x2, . . . , xn}.

We now form a set S ⊆ F (Ω, X0)2 of identities for a variety V(S). [Recall
that X0 is a countably infinite set.] For any expressions w1, w2 ∈ F (Ω, X0), we
have w1, w2 ∈ F (Ω, X ′) for some finite subset of X ′ = {x1, x2, . . . , xn} of X0.
Thus w1 and w2 are expressions in x1, x2, . . . , xn, and therefore, when each xi
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is changed to ηX′(xi) the resulting expressions can be evaluated to elements of
the algebra TX ′ = Ω(n); if they are the same element, assign (w1, w2) ∈ S.

We now claim that V(S) is our desired variety; to do this, we must show
four things:

(1) For any set X, TX is identifiably FS(Ω, X);
(2) For any f : X → Y ; T (f) : TX → TY is the homomorphism f : FS(Ω, X)→
FS(Ω, Y ) which extends f ;
(3) ηX : X → TX is the usual inclusion X → FS(Ω, X);
(4) µX : TTX → TX is the evaluation homomorphism FS(Ω, TX)→ TX.

This will mean the monad necessarily matches up with the one we have in the
previous section.

We first show that for each f : X → Y , T (f) : TX → TY is a homomor-
phism. Take any ω ∈ Ω(n), a1, a2, . . . , an ∈ TX. Let g1 : {x1, x2, . . . , xn} → TX
sending xi → ai, so g2 = T (f)g1 : {x1, x2, . . . , xn} → TY sends xi → T (f)(ai).
Then by definition of ω, µXT (g1)(ω) = (ωa1a2 . . . an), and µY T (g2)(ω) =
(ωT (f)(a1)T (f)(a2) . . . T (f)(an)). However, µY T (g2) = µY T (T (f)g1) =
µY TT (f)T (g1) = T (f)µXT (g1), by naturality of µ. Thus µY T (g2)(ω) =
T (f)[µXT (g1)(ω)] = T (f)(ωa1a2 . . . an), and

T (f)(ωa1a2 . . . an) = (ωT (f)(a1)T (f)(a2) . . . T (f)(an)),

proving that T (f) is a homomorphism.
Next, we prove that µX : TTX → TX is a homomorphism. For any ω ∈

Ω(n), a1, a2, . . . , an ∈ TTX, let g1 : {x1, x2, . . . , xn} → TTX send xi → ai and
g2 = µXg1 : {x1, x2, . . . , xn} → TX. Then by definition of ω, µTXT (g1)(ω) =
(ωa1a2 . . . an), and µXT (g2)(ω) = (ωµX(a1)µX(a2) . . . µX(an)). But µXT (g2) =
µXT (µXg1) = µXT (µX)T (g1) = µXµTXT (g1) [recall that µ(Tµ) = µ(µT )].
Therefore, µXT (g2)(ω) = µX [µTXT (g1)(ω)] = µX(ωa1a2 . . . an). It follows that
µX is a homomorphism, as µXT (g2)(ω) is equal to both µX(ωa1a2 . . . an) and
(ωµX(a1)µX(a2) . . . µX(an)).

We are now ready to prove statements (1)-(4) above.
To show (1), first we need to prove that the Ω-algebra TX is in V(S).

To do this, take any homomorphism ϕ : F (Ω, X0) → TX and (w1, w2) ∈ S.
Then w1, w2 ∈ F (Ω, X ′) for some finite subset X ′ = {x1, x2, . . . , xn} of X0.
Furthermore, w1, w2 ∈ Ω(n), and if ai = ϕ(xi) ∈ TX for each i, then ϕ(wj) =
(wja1a2 . . . an) for j = 1, 2 because ϕ is a homomorphism. Now take the map
ψ : X ′ → TX sending xi → ai and form φ = µXT (ψ) : TX ′ → TX. The
last two paragraphs imply that φ is a homomorphism, so φ(wjx1x2 . . . xn) =
(wja1a2 . . . an) for j = 1, 2. However, (w1x1x2 . . . xn) and (w2x1x2 . . . xn) are
the same element of TX ′, because (w1, w2) ∈ S. Therefore, (w1a1a2 . . . an) =
(w2a1a2 . . . an), from which it follows that (w1, w2) ∈ F (Ω, X0)2 is in the kernel
of ϕ. Therefore, TX ∈ V(S).

Because of this, there is a unique homomorphism hX : FS(Ω, X) → TX
extending the set map ηX : X → TX. We claim that hX is an isomorphism. To
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support this claim, first suppose X is a finite set, say {x1, x2, . . . , xn}. Then if
hX(e1) = hX(e2) with e1, e2 ∈ F (Ω, X), then after identifying X with a subset
of X0, e1 and e2 are expressions in x1, x2, . . . , xn which evaluate, after substi-
tuting xi → ηX(xi), to the same element in TX = Ω(n). Hence (e1, e2) ∈ S by
definition of S and e1 = e2. Therefore, hX is injective. For each ω ∈ TX = Ω(n),
hX sends the expression (ωx1x2 . . . xn) to (ωηX(x1)ηX(x2) . . . ηX(xn)) = ω (be-
cause hX is a homomorphism), so hX is surjective. Thus hX is an isomorphism
if X is finite.

Now suppose X is infinite. For each finite subset X ′ of X, recall that
FS(Ω, X ′) is a subalgebra of FS(Ω, X), and realize that TX ′ is identifiably a
subalgebra of TX, because if ι : X ′ → X is the inclusion map, T (ι) is injective,
and is a homomorphism as proved above. It is clear that hX sends elements of
FS(Ω, X ′) to elements of TX ′. Hence hX |FS(Ω, X ′) is the homomorphism from
FS(Ω, X ′) → TX ′ sending x ∈ X ′ to ηX(x) = ηX′(x); by the argument in the
previous paragraph, it is an isomorphism. Thus whenever hX(e1) = hX(e2),
the restriction of hX to FS(Ω, X ′) with some suitable finite subset X ′ sends e1
and e2 to the same element of TX ′, so that e1 = e2 and hX is injective. The
surjectivity of h follows from the fact that (T, η, µ) is finitary — for all ω ∈ TX,
ω ∈ TX ′ for some finite subset X ′ of X, and therefore h sends an element of
FS(Ω, X ′) to ω.

This proves that hX is an isomorphism, and it identifies TX with FS(Ω, X).
The proof of (1) is complete.

(3) follows from the fact that if iX : X → FS(Ω, X) is the usual free-algebra
inclusion, then hX iX = ηX . Thus when hX identifies the algebras together, it
identifies iX and ηX together.

As for statement (2), we already know that T (f) : TX → TY is a homomor-
phism, so we need only show that T (f) sends ηX(x), x ∈ X to ηY (f(x)). This is
an immediate consequence of the naturality of η, which implies T (f)ηX = ηY f .

Now to prove statement (4): we already proved that µX is a homomorphism,
so we only need to show that it extends the identity map TX → TX; that is,
µXηTX = 1TX . But this follows immediately from the monad axiom µ(ηT ) =
1T .

Thus statements (1)-(4) are proven and the proof is completed. �

It’s not easy to overestimate the power of what we have just proved. We’ve
shown that from (almost) every monad on Set, we can recover a variety in uni-
versal algebra. There may be many other adjunctions from which monads on
Set are formed; but those adjunctions would most likely not be monadic.

EXERCISES

1. Prove or disprove:

(a) If (T, η, µ) is a monad on Set, then its Eilenberg-Moore category CT

is an algebraic category [Section 10].

(b) (T, η, µ) is a finitary monad if and only if CT is a finitary algebraic
category.
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2. Tell whether or not each monad on Set is finitary. If it is, state which va-
riety it comes from. If not, find some other way to describe the Eilenberg-
Moore category.

(a) TX = P(X); for f : X → Y , T (f) is the image map P(X) → P(Y )
sending S → f(S); ηX : X → P(X) sends each x ∈ X to {x}; µX :
P(P(X)) → P(X) sends each set of subsets of X to the union of the
subsets. [Example 3 of Section 11]

(b) Same as part (a), but TX is the set of nonempty subsets of X.

(c) Same as part (a), but TX is the set of finite subsets of X.

(d) Same as part (a), but TX is the set of countable subsets of X.

(e) Let M be a fixed monoid. TX = M ×X; for f : X → Y , T (f) is the
map M×X →M×Y sending (m,x)→ (m, f(x)); ηX : X →M×X sends
each x ∈ X to (1, x); µX : M × (M ×X)→M ×X sends (m1, (m2, x))→
(m1m2, x). [Example 2 of Section 11]

(f) TX = {◦} for all X and T (f), η, µ are defined in the unique ways.

(g) TX = X × X; for f : X → Y , T (f) is the map X × X → Y × Y
sending (x1, x2) → (f(x1), f(x2)); ηX : X → X × X sends each x ∈ X
to (x, x); µX : (X ×X)× (X ×X)→ X ×X sends ((x1, x2), (x3, x4)) to
(x1, x4).

(h) Let S be a fixed set. TX = XS [functions from S to X]; for f :
X → Y , T (f) is the map XS → Y S sending h → fh for h : S → X;
ηX : X → XS sends each x ∈ X to the constant function s → x in XS ;
µX : (XS)S → XS sends each h : S → XS to the map s → h(s)(s) from
S → X. [Caution: Whether this monad is finitary depends on something
about S. Parts (f) and (g) are special cases of this, so they may help.]

(i) Let S be a fixed set. TX = X ] S; for f : X → Y , T (f) is the map
X]S → Y ]S sending each x ∈ X to f(x) and each element of S to itself;
ηX : X → X ] S sends each x to itself in the disjoint union summand X;
µX : (X ] S) ] S = X ] S sends each x to itself and each s in either of
the S’s to itself in the summand S.
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